Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells

The proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) was investigated in three-dimensional non-woven fabrics prepared from polyethylene terephthalate (PET) fiber with different diameters. When seeded into the fabrics of cell scaffold, more MSC attached in the fabric of t...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomaterials science. Polymer ed. Vol. 15; no. 1; pp. 41 - 57
Main Authors Takahashi, Yoshitake, Tabata, Yasuhiko
Format Journal Article
LanguageEnglish
Published England Taylor & Francis Group 01.01.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) was investigated in three-dimensional non-woven fabrics prepared from polyethylene terephthalate (PET) fiber with different diameters. When seeded into the fabrics of cell scaffold, more MSC attached in the fabric of thicker PET fibers than that of thinner ones, irrespective of the fabric porosity. The morphology of cells attached became more spreaded with an increase in the fiber diameter of fabrics. The rate of MSC proliferation depended on the PET fiber diameter and porosity of fabrics: the bigger the fiber diameter of fabrics with higher porosity, the higher their proliferation rate. When the alkaline phosphatase (ALP) activity and osteocalcin content of MSC cultured in different types of fabrics was measured to evaluate the ostegenic differentiation, they became maximum for the non-woven fabrics with a fiber diameter of 9.0 μm, although the values of low-porous fabrics were significantly high compared with those of high porous fabrics. We concluded that the attachment, proliferation and bone differentiation of MSC was influenced by the fiber diameter and porosity of non-woven fabrics as the scaffold.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0920-5063
1568-5624
DOI:10.1163/156856204322752228