Genome-wide Association of Copy-Number Variation Reveals an Association between Short Stature and the Presence of Low-Frequency Genomic Deletions
Height is a model polygenic trait that is highly heritable. Genome-wide association studies have identified hundreds of single-nucleotide polymorphisms associated with stature, but the role of structural variation in determining height is largely unknown. We performed a genome-wide association study...
Saved in:
Published in | American journal of human genetics Vol. 89; no. 6; pp. 751 - 759 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, MA
Elsevier Inc
09.12.2011
Cell Press Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Height is a model polygenic trait that is highly heritable. Genome-wide association studies have identified hundreds of single-nucleotide polymorphisms associated with stature, but the role of structural variation in determining height is largely unknown. We performed a genome-wide association study of copy-number variation and stature in a clinical cohort of children who had undergone comparative genomic hybridization (CGH) microarray analysis for clinical indications. We found that subjects with short stature had a greater global burden of copy-number variants (CNVs) and a greater average CNV length than did controls (p < 0.002). These associations were present for lower-frequency (<5%) and rare (<1%) deletions, but there were no significant associations seen for duplications. Known gene-deletion syndromes did not account for our findings, and we saw no significant associations with tall stature. We then extended our findings into a population-based cohort and found that, in agreement with the clinical cohort study, an increased burden of lower-frequency deletions was associated with shorter stature (p = 0.015). Our results suggest that in individuals undergoing copy-number analysis for clinical indications, short stature increases the odds that a low-frequency deletion will be found. Additionally, copy-number variation might contribute to genetic variation in stature in the general population. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 These authors contributed equally to this work |
ISSN: | 0002-9297 1537-6605 1537-6605 |
DOI: | 10.1016/j.ajhg.2011.10.014 |