Ciclesonide Inhibits SARS-CoV-2 Papain-Like Protease in Vitro

The emergence of coronavirus disease 2019 (COVID-19), a novel identified pneumonia resulting from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, has significantly impacted and posed significant challenges to human society. The papain-like protease (PLpro) found in the nonstr...

Full description

Saved in:
Bibliographic Details
Published inBiological & pharmaceutical bulletin Vol. 47; no. 5; pp. 965 - 966
Main Authors Kiba, Yuka, Tanikawa, Takashi, Kitamura, Masashi
Format Journal Article
LanguageEnglish
Published Japan The Pharmaceutical Society of Japan 17.05.2024
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The emergence of coronavirus disease 2019 (COVID-19), a novel identified pneumonia resulting from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, has significantly impacted and posed significant challenges to human society. The papain-like protease (PLpro) found in the nonstructural protein 3 of SARS-CoV-2 plays a vital role in viral replication. Moreover, PLpro disrupts the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 from host proteins. Consequently, PLpro has emerged as a promising drug target against SARS-CoV-2 infection. Computational studies have reported that ciclesonide can bind to SARS-CoV-2 PLpro. However, the inhibitory effects of ciclenoside on the PLpro have not been experimentally evaluated. Here, we evaluated the inhibitory effects of synthetic glucocorticoids (sGCs), including ciclesonide, on SARS-CoV-2 PLpro in vitro assay. Ciclesonide significantly inhibited the enzymatic activity of PLpro, compared with other sGCs and its IC50 was 18.4 ± 1.89 µM. These findings provide insights into the development of PLpro inhibitors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0918-6158
1347-5215
DOI:10.1248/bpb.b24-00038