Tricuspid Annular Geometry: A Three-Dimensional Transesophageal Echocardiographic Study

Objective To demonstrate the clinical feasibility of accurately measuring tricuspid annular area by 3-dimensional (3D) transesophageal echocardiography (TEE) and to assess the geometric differences based on the presence of tricuspid regurgitation (TR). Also, the shape of the tricuspid annulus was co...

Full description

Saved in:
Bibliographic Details
Published inJournal of cardiothoracic and vascular anesthesia Vol. 27; no. 4; pp. 639 - 646
Main Authors Mahmood, Feroze, MD, Kim, Han, MD, FRCPC, Chaudary, Bilal, MD, Bergman, Remco, MD, Matyal, Robina, MD, Gerstle, Jeniffer, MD, Gorman, Joseph H., MD, Gorman, Robert C., MD, Khabbaz, Kamal R., MD
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objective To demonstrate the clinical feasibility of accurately measuring tricuspid annular area by 3-dimensional (3D) transesophageal echocardiography (TEE) and to assess the geometric differences based on the presence of tricuspid regurgitation (TR). Also, the shape of the tricuspid annulus was compared with previous descriptions in the literature. Design Prospective. Setting Tertiary care university hospital. Interventions Three-dimensional TEE. Participants Patients undergoing cardiac surgery. Measurements and Main Results Volumetric data sets from 20 patients were acquired by 3D TEE and prospectively analyzed. Comparisons in annular geometry were made between groups based on the presence of TR. The QLab (Philips Medical Systems, Andover, MA) software package was used to calculate tricuspid annular area by both linear elliptical dimensions and planimetry. Further analyses were performed in the 4D Cardio-View (TomTec Corporation GmBH, Munich, Germany) and MATLAB (Natick, MA) software environments to accurately assess annular shape. It was found that patients with greater TR had an eccentrically dilated annulus with a larger annular area. Also, the area as measured by the linear ellipse method was overestimated as compared to the planimetry method. Furthermore, the irregular saddle-shaped geometry of the tricuspid annulus was confirmed through the mathematic model developed by the authors. Conclusions Three-dimensional TEE can be used to measure the tricuspid annular area in a clinically feasible fashion, with an eccentric dilation seen in patients with TR. The tricuspid annulus shape is complex, with annular high and low points, and annular area calculation based on linear measurements significantly overestimates 3D planimetered area.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1053-0770
1532-8422
DOI:10.1053/j.jvca.2012.12.014