Biomechanical Characteristics and Analysis Approaches of Bone and Bone Substitute Materials

Bone has a special structure that is both stiff and elastic, and the composition of bone confers it with an exceptional mechanical property. However, bone substitute materials that are made of the same hydroxyapatite (HA) and collagen do not offer the same mechanical properties. It is important for...

Full description

Saved in:
Bibliographic Details
Published inJournal of functional biomaterials Vol. 14; no. 4; p. 212
Main Authors Niu, Yumiao, Du, Tianming, Liu, Youjun
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.04.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Bone has a special structure that is both stiff and elastic, and the composition of bone confers it with an exceptional mechanical property. However, bone substitute materials that are made of the same hydroxyapatite (HA) and collagen do not offer the same mechanical properties. It is important for bionic bone preparation to understand the structure of bone and the mineralization process and factors. In this paper, the research on the mineralization of collagen is reviewed in terms of the mechanical properties in recent years. Firstly, the structure and mechanical properties of bone are analyzed, and the differences of bone in different parts are described. Then, different scaffolds for bone repair are suggested considering bone repair sites. Mineralized collagen seems to be a better option for new composite scaffolds. Last, the paper introduces the most common method to prepare mineralized collagen and summarizes the factors influencing collagen mineralization and methods to analyze its mechanical properties. In conclusion, mineralized collagen is thought to be an ideal bone substitute material because it promotes faster development. Among the factors that promote collagen mineralization, more attention should be given to the mechanical loading factors of bone.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
These authors contributed equally to this work.
ISSN:2079-4983
2079-4983
DOI:10.3390/jfb14040212