Recent advances in various adeno-associated viruses (AAVs) as gene therapy agents in hepatocellular carcinoma

Primary liver cancer, which is scientifically referred to as hepatocellular carcinoma (HCC), is a significant concern in the field of global health. It has been demonstrated that conventional chemotherapy, chemo-hormonal therapy, and conformal radiotherapy are ineffective against HCC. New therapeuti...

Full description

Saved in:
Bibliographic Details
Published inVirology journal Vol. 21; no. 1; pp. 17 - 22
Main Authors Hadi, Meead, Qutaiba B Allela, Omer, Jabari, Mansoureh, Jasoor, Asna Mahyazadeh, Naderloo, Omid, Yasamineh, Saman, Gholizadeh, Omid, Kalantari, Leila
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 12.01.2024
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Primary liver cancer, which is scientifically referred to as hepatocellular carcinoma (HCC), is a significant concern in the field of global health. It has been demonstrated that conventional chemotherapy, chemo-hormonal therapy, and conformal radiotherapy are ineffective against HCC. New therapeutic approaches are thus urgently required. Identifying single or multiple mutations in genes associated with invasion, metastasis, apoptosis, and growth regulation has resulted in a more comprehensive comprehension of the molecular genetic underpinnings of malignant transformation, tumor advancement, and host interaction. This enhanced comprehension has notably propelled the development of novel therapeutic agents. Therefore, gene therapy (GT) holds great promise for addressing the urgent need for innovative treatments in HCC. However, the complexity of HCC demands precise and effective therapeutic approaches. The adeno-associated virus (AAV) distinctive life cycle and ability to persistently infect dividing and nondividing cells have rendered it an alluring vector. Another appealing characteristic of the wild-type virus is its evident absence of pathogenicity. As a result, AAV, a vector that lacks an envelope and can be modified to transport DNA to specific cells, has garnered considerable interest in the scientific community, particularly in experimental therapeutic strategies that are still in the clinical stage. AAV vectors emerge as promising tools for HCC therapy due to their non-immunogenic nature, efficient cell entry, and prolonged gene expression. While AAV-mediated GT demonstrates promise across diverse diseases, the current absence of ongoing clinical trials targeting HCC underscores untapped potential in this context. Furthermore, gene transfer through hepatic AAV vectors is frequently facilitated by GT research, which has been propelled by several congenital anomalies affecting the liver. Notwithstanding the enthusiasm associated with this notion, recent discoveries that expose the integration of the AAV vector genome at double-strand breaks give rise to apprehensions regarding their enduring safety and effectiveness. This review explores the potential of AAV vectors as versatile tools for targeted GT in HCC. In summation, we encapsulate the multifaceted exploration of AAV vectors in HCC GT, underlining their transformative potential within the landscape of oncology and human health.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:1743-422X
1743-422X
DOI:10.1186/s12985-024-02286-1