Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas
Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to different families in the order Carnivora, but both have evolved...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 5; pp. 1081 - 1086 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
31.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to different families in the order Carnivora, but both have evolved a specialized bamboo diet and adaptive pseudothumb, representing a classic model of convergent evolution. However, the genetic bases of these morphological and physiological convergences remain unknown. Through de novo sequencing the red panda genome and improving the giant panda genome assembly with added data, we identified genomic signatures of convergent evolution. Limb development genes DYNC2H1 and PCNT have undergone adaptive convergence and may be important candidate genes for pseudothumb development. As evolutionary responses to a bamboo diet, adaptive convergence has occurred in genes involved in the digestion and utilization of bamboo nutrients such as essential amino acids, fatty acids, and vitamins. Similarly, the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings offer insights into genetic convergence mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet. |
---|---|
AbstractList | Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to different families in the order Carnivora, but both have evolved a specialized bamboo diet and adaptive pseudothumb, representing a classic model of convergent evolution. However, the genetic bases of these morphological and physiological convergences remain unknown. Through de novo sequencing the red panda genome and improving the giant panda genome assembly with added data, we identified genomic signatures of convergent evolution. Limb development genes DYNC2H1 and PCNT have undergone adaptive convergence and may be important candidate genes for pseudothumb development. As evolutionary responses to a bamboo diet, adaptive convergence has occurred in genes involved in the digestion and utilization of bamboo nutrients such as essential amino acids, fatty acids, and vitamins. Similarly, the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings offer insights into genetic convergence mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet. The giant panda and red panda are obligate bamboo-feeders that independently evolved from meat-eating ancestors and possess adaptive pseudothumbs, making them ideal models for studying convergent evolution. In this study, we identified genomic signatures of convergent evolution associated with bamboo eating. Comparative genomic analyses revealed adaptively convergent genes potentially involved with pseudothumb development and essential bamboo nutrient utilization. We also found that the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings provide insights into genetic mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet in both pandas and offer an example of genome-scale analyses for detecting convergent evolution. Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda ( Ailuropoda melanoleuca ) and red panda ( Ailurus fulgens ) belong to different families in the order Carnivora, but both have evolved a specialized bamboo diet and adaptive pseudothumb, representing a classic model of convergent evolution. However, the genetic bases of these morphological and physiological convergences remain unknown. Through de novo sequencing the red panda genome and improving the giant panda genome assembly with added data, we identified genomic signatures of convergent evolution. Limb development genes DYNC2H1 and PCNT have undergone adaptive convergence and may be important candidate genes for pseudothumb development. As evolutionary responses to a bamboo diet, adaptive convergence has occurred in genes involved in the digestion and utilization of bamboo nutrients such as essential amino acids, fatty acids, and vitamins. Similarly, the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings offer insights into genetic convergence mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet. Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to different families in the order Carnivora, but both have evolved a specialized bamboo diet and adaptive pseudothumb, representing a classic model of convergent evolution. However, the genetic bases of these morphological and physiological convergences remain unknown. Through de novo sequencing the red panda genome and improving the giant panda genome assembly with added data, we identified genomic signatures of convergent evolution. Limb development genes DYNC2H1 and PCNT have undergone adaptive convergence and may be important candidate genes for pseudothumb development. As evolutionary responses to a bamboo diet, adaptive convergence has occurred in genes involved in the digestion and utilization of bamboo nutrients such as essential amino acids, fatty acids, and vitamins. Similarly, the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings offer insights into genetic convergence mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet.Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to different families in the order Carnivora, but both have evolved a specialized bamboo diet and adaptive pseudothumb, representing a classic model of convergent evolution. However, the genetic bases of these morphological and physiological convergences remain unknown. Through de novo sequencing the red panda genome and improving the giant panda genome assembly with added data, we identified genomic signatures of convergent evolution. Limb development genes DYNC2H1 and PCNT have undergone adaptive convergence and may be important candidate genes for pseudothumb development. As evolutionary responses to a bamboo diet, adaptive convergence has occurred in genes involved in the digestion and utilization of bamboo nutrients such as essential amino acids, fatty acids, and vitamins. Similarly, the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings offer insights into genetic convergence mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet. |
Author | Wu, Qi Ning, Zemin Hu, Yibo Yan, Li Ma, Shuai Ma, Tianxiao Xiu, Yunfang Shan, Lei Nie, Yonggang Wei, Fuwen Wang, Xiao |
Author_xml | – sequence: 1 givenname: Yibo surname: Hu fullname: Hu, Yibo organization: Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China – sequence: 2 givenname: Qi surname: Wu fullname: Wu, Qi organization: Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China – sequence: 3 givenname: Shuai surname: Ma fullname: Ma, Shuai organization: University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 4 givenname: Tianxiao surname: Ma fullname: Ma, Tianxiao organization: University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 5 givenname: Lei surname: Shan fullname: Shan, Lei organization: Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China – sequence: 6 givenname: Xiao surname: Wang fullname: Wang, Xiao organization: University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 7 givenname: Yonggang surname: Nie fullname: Nie, Yonggang organization: Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China – sequence: 8 givenname: Zemin surname: Ning fullname: Ning, Zemin organization: Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom – sequence: 9 givenname: Li surname: Yan fullname: Yan, Li organization: Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China – sequence: 10 givenname: Yunfang surname: Xiu fullname: Xiu, Yunfang organization: Straits (Fuzhou) Giant Panda Research and Exchange Center, Fuzhou 350001, China – sequence: 11 givenname: Fuwen surname: Wei fullname: Wei, Fuwen organization: University of Chinese Academy of Sciences, Beijing 100049, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28096377$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksFvFCEUxolpY7fVsyfNJF56mRYGGOBiYjZWTZr00p4RmLdbNjMwwswY_3vZbGu1iYknCO_3ffke752ioxADIPSG4AuCBb0cg8kXpCVUCkwIe4FWBCtSt0zhI7TCuBG1ZA07Qac57zDGikv8Ep00EquWCrFC39ZxGE0yk1-g2kKIg3e5SrCA6XPlYlggleepgiX28-RjqCxMPwBCNd1DZc1gY6yh6MO22npTSBO6YtBVY7mY_Aodb4oVvH44z9Dd1afb9Zf6-ubz1_XH69px1kw1tQ5Uh63kFjbOScUksw1pOMcgOqCyk4ZLxwzdUAEdV5Zwyy2lvHTCZEPP0IeD7zjbATpXMifT6zH5waSfOhqv_64Ef6-3cdG8URQzXgzOHwxS_D5DnvTgs4O-NwHinDWRkohWEIn_A20Jb1krZEHfP0N3cU6h_MSeKt01mLNCvfsz_O_Uj3MqAD8ALsWcE2y085PZj6P04ntNsN7vg97vg37ah6K7fKZ7tP634u1BsctTTE9JWiYUoYr-AqTlwr4 |
CitedBy_id | crossref_primary_10_1016_j_cub_2021_01_073 crossref_primary_10_1186_s13059_019_1889_7 crossref_primary_10_3389_fvets_2025_1509698 crossref_primary_10_1101_gr_237586_118 crossref_primary_10_1016_j_xinn_2021_100185 crossref_primary_10_3389_fgene_2022_863617 crossref_primary_10_1073_pnas_1805348115 crossref_primary_10_1073_pnas_1711437114 crossref_primary_10_1126_sciadv_aax5751 crossref_primary_10_1111_mec_16204 crossref_primary_10_1016_j_scitotenv_2021_145316 crossref_primary_10_3390_ani11020251 crossref_primary_10_1016_j_cub_2021_03_084 crossref_primary_10_1360_SSV_2024_0025 crossref_primary_10_1016_j_cub_2019_03_067 crossref_primary_10_1038_s41598_022_19742_z crossref_primary_10_1007_s11427_022_2233_x crossref_primary_10_1016_j_cub_2019_04_021 crossref_primary_10_1093_lifemeta_loac040 crossref_primary_10_3390_ani13060979 crossref_primary_10_1038_s41467_017_01491_7 crossref_primary_10_3389_fmicb_2020_551038 crossref_primary_10_1093_jhered_esab021 crossref_primary_10_3390_microorganisms12030478 crossref_primary_10_1186_s12864_021_07531_3 crossref_primary_10_3389_fmicb_2018_01411 crossref_primary_10_1093_chemse_bjac033 crossref_primary_10_1007_s10722_024_01989_2 crossref_primary_10_1038_nature_2017_21300 crossref_primary_10_1007_s00248_017_1114_8 crossref_primary_10_1038_s42003_021_02173_3 crossref_primary_10_1093_nar_gkac954 crossref_primary_10_1177_1178646917704661 crossref_primary_10_1098_rspb_2023_2448 crossref_primary_10_1186_s12864_020_07269_4 crossref_primary_10_1038_s42003_023_04415_y crossref_primary_10_1016_j_scitotenv_2021_146659 crossref_primary_10_1016_j_beproc_2022_104688 crossref_primary_10_1146_annurev_genom_111219_080427 crossref_primary_10_1093_cz_zoy015 crossref_primary_10_1016_j_cub_2018_05_008 crossref_primary_10_1016_j_scitotenv_2020_139424 crossref_primary_10_1016_j_csbj_2021_08_025 crossref_primary_10_7717_peerj_4140 crossref_primary_10_1093_nsr_nwac174 crossref_primary_10_1146_annurev_animal_021022_054730 crossref_primary_10_1186_s13059_024_03288_6 crossref_primary_10_1016_j_zool_2020_125775 crossref_primary_10_2174_1389202920666190313162702 crossref_primary_10_1186_s12898_018_0161_4 crossref_primary_10_3389_fmicb_2021_633075 crossref_primary_10_1101_gr_278476_123 crossref_primary_10_1111_1749_4877_12652 crossref_primary_10_3390_ani10122352 crossref_primary_10_1111_mec_16306 crossref_primary_10_1590_1678_4685_gmb_2022_0384 crossref_primary_10_1080_08912963_2021_2006195 crossref_primary_10_1093_nar_gkac924 crossref_primary_10_3389_fmars_2023_1170704 crossref_primary_10_1098_rspb_2023_0538 crossref_primary_10_1111_1749_4877_12291 crossref_primary_10_3389_fmed_2022_983992 crossref_primary_10_18632_aging_103783 crossref_primary_10_1186_s12864_020_6690_1 crossref_primary_10_1007_s42995_023_00197_8 crossref_primary_10_1111_mec_15610 crossref_primary_10_1073_pnas_2021516118 crossref_primary_10_1360_SSV_2024_0167 crossref_primary_10_1101_gr_278930_124 crossref_primary_10_1186_s12864_023_09111_z crossref_primary_10_1007_s10592_018_1072_9 crossref_primary_10_1016_j_cois_2019_09_005 crossref_primary_10_1007_s13225_022_00502_3 crossref_primary_10_1538_expanim_19_0021 crossref_primary_10_1016_j_isci_2025_111776 crossref_primary_10_1002_ece3_6327 crossref_primary_10_52547_JAD_2021_3_2_6 crossref_primary_10_1093_gbe_evaa029 crossref_primary_10_1111_mec_16018 crossref_primary_10_1016_j_ygeno_2022_110501 crossref_primary_10_1111_ede_12264 crossref_primary_10_1186_s12862_022_02033_6 crossref_primary_10_3390_genes13081446 crossref_primary_10_1038_s42003_023_05359_z crossref_primary_10_59717_j_xinn_life_2024_100066 crossref_primary_10_1111_1749_4877_12676 crossref_primary_10_1016_j_tig_2020_04_004 crossref_primary_10_3389_fmicb_2022_1009588 crossref_primary_10_1038_s41396_022_01247_2 crossref_primary_10_1186_s12862_021_01753_5 crossref_primary_10_1016_j_gecco_2023_e02428 crossref_primary_10_3390_su17020755 crossref_primary_10_3389_fmicb_2023_1276620 crossref_primary_10_1098_rspb_2021_0346 crossref_primary_10_1002_ece3_8470 crossref_primary_10_3389_fgene_2023_1198977 crossref_primary_10_3390_biology13120956 crossref_primary_10_1038_s41437_018_0180_0 crossref_primary_10_1093_molbev_msaa068 crossref_primary_10_1186_s40246_019_0210_x crossref_primary_10_3897_zookeys_923_39665 crossref_primary_10_1007_s10123_024_00583_x crossref_primary_10_1038_s41598_024_55549_w crossref_primary_10_1111_1755_0998_13443 crossref_primary_10_1126_sciadv_aao5441 crossref_primary_10_1038_s41598_021_97850_y crossref_primary_10_1098_rstb_2018_0248 crossref_primary_10_1186_s13071_024_06402_6 crossref_primary_10_1093_molbev_msz127 crossref_primary_10_2139_ssrn_3363854 crossref_primary_10_1007_s13199_020_00673_0 crossref_primary_10_1073_pnas_1813593115 crossref_primary_10_1080_02604027_2023_2226594 crossref_primary_10_1093_nsr_nwaa002 crossref_primary_10_1093_gbe_evae040 crossref_primary_10_1016_j_xplc_2020_100117 crossref_primary_10_1038_s41598_022_13402_y crossref_primary_10_3390_genes9040198 crossref_primary_10_1038_s41559_020_1209_3 crossref_primary_10_7717_peerj_12559 crossref_primary_10_1101_cshperspect_a041451 crossref_primary_10_1111_mec_15542 crossref_primary_10_1016_j_tig_2019_09_009 crossref_primary_10_1038_s41467_023_37909_8 crossref_primary_10_3390_genes14030619 crossref_primary_10_1093_nsr_nwaa076 crossref_primary_10_1093_gbe_evab103 crossref_primary_10_7717_peerj_10528 crossref_primary_10_1038_nrg_2017_51 crossref_primary_10_1073_pnas_1910471116 crossref_primary_10_1111_1749_4877_12851 crossref_primary_10_1007_s42991_023_00386_z crossref_primary_10_3389_fmolb_2017_00081 crossref_primary_10_1007_s11427_020_1748_0 crossref_primary_10_3389_fevo_2022_999411 crossref_primary_10_3390_ani14233512 crossref_primary_10_7554_eLife_55414 crossref_primary_10_1002_ece3_9185 crossref_primary_10_1093_gbe_evz070 crossref_primary_10_1093_molbev_msaa243 crossref_primary_10_1111_eva_13731 crossref_primary_10_1126_sciadv_abd2274 crossref_primary_10_3389_fevo_2021_736741 crossref_primary_10_1016_j_isci_2023_107307 crossref_primary_10_1093_gbe_evab038 crossref_primary_10_1093_bioadv_vbae070 crossref_primary_10_1016_j_yhbeh_2020_104771 crossref_primary_10_1186_s12870_022_03752_0 crossref_primary_10_1093_cz_zoaa080 crossref_primary_10_2139_ssrn_3316802 crossref_primary_10_1111_eva_12915 crossref_primary_10_1111_evo_14229 crossref_primary_10_1007_s11427_020_1750_7 crossref_primary_10_3390_ani12243572 crossref_primary_10_1016_j_jgg_2018_09_005 crossref_primary_10_1128_mSphere_00229_18 crossref_primary_10_1371_journal_pone_0311518 crossref_primary_10_1152_physrev_00017_2024 crossref_primary_10_3389_fmolb_2021_716544 crossref_primary_10_3390_genes12091336 crossref_primary_10_1002_ece3_5797 crossref_primary_10_1016_j_cub_2018_12_051 crossref_primary_10_3390_rs14061302 crossref_primary_10_1098_rspb_2024_0818 crossref_primary_10_3389_fevo_2023_1107034 crossref_primary_10_1016_j_gene_2018_02_037 crossref_primary_10_1007_s11427_019_9468_8 crossref_primary_10_3390_genes11010050 crossref_primary_10_1098_rspb_2017_0955 crossref_primary_10_1093_molbev_msaf012 crossref_primary_10_1111_1749_4877_12352 crossref_primary_10_1093_molbev_msz232 crossref_primary_10_3389_fmicb_2020_01061 crossref_primary_10_3390_ani14121795 |
Cites_doi | 10.1017/CBO9780511665431.022 10.1083/jcb.200405023 10.1093/molbev/msi237 10.1097/FJC.0b013e318185fa3c 10.1073/pnas.1117133109 10.3390/nu2030299 10.1093/sysbio/syq090 10.1111/mec.12096 10.1126/science.1211028 10.1093/bioinformatics/btm071 10.1073/pnas.1530509100 10.1093/bioinformatics/btv351 10.1038/nature05401 10.1093/molbev/msv013 10.1016/j.ydbio.2010.01.017 10.1016/j.ydbio.2005.08.050 10.1111/j.1469-7580.2006.00649.x 10.1093/sysbio/syw018 10.1016/j.tig.2010.06.005 10.1038/nrg.2016.11 10.1073/pnas.0504899102 10.1093/molbev/msm088 10.1093/bioinformatics/btp348 10.1016/j.ympev.2010.01.033 10.1242/dev.124.1.113 10.1016/S0009-8981(02)00307-8 10.1093/molbev/msw197 10.1038/nature08696 10.1017/S1477201904001518 10.1093/molbev/msr047 10.1042/BJ20040621 10.1093/nar/gkm291 10.1093/oxfordjournals.molbev.a025789 10.1038/ng.3198 10.1093/molbev/msq153 10.1093/nar/gkh340 10.1038/16830 10.1016/j.ajhg.2009.04.016 10.2307/1312297 10.1038/nrg3483 10.1016/j.ajhg.2009.03.015 10.1093/molbev/msv091 10.1002/neu.20242 10.1093/sysbio/sys029 10.1126/science.1255274 10.1093/molbev/msv014 10.1093/bioinformatics/btv770 10.1126/science.1253451 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Jan 31, 2017 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Jan 31, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1613870114 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Virology and AIDS Abstracts MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Convergent evolution between giant and red pandas |
EISSN | 1091-6490 |
EndPage | 1086 |
ExternalDocumentID | PMC5293045 4312590581 28096377 10_1073_pnas_1613870114 26479139 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study Feature |
GrantInformation_xml | – fundername: Chinese Ministry of Science and Technology | Department of S and T for Social Development (Department of S&T for Social Development) grantid: 2016YFC0503200 – fundername: Chinese Academy of Sciences (CAS) grantid: KJZD-EW-L07 – fundername: National Natural Science Foundation of China (NSFC) grantid: 91531302 – fundername: National Natural Science Foundation of China (NSFC) grantid: 31470441 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c542t-3bce9d0b85befcc89484b212550e7de38d8a58c4a3f37ed59b15b5b3350964823 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:07:56 EDT 2025 Fri Jul 11 16:26:14 EDT 2025 Fri Jul 11 12:35:10 EDT 2025 Mon Jun 30 08:39:34 EDT 2025 Thu Apr 03 06:58:31 EDT 2025 Tue Jul 01 03:19:28 EDT 2025 Thu Apr 24 22:57:41 EDT 2025 Fri May 30 11:46:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | pseudogenization positive selection phenotype convergence amino acid convergence de novo genome |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c542t-3bce9d0b85befcc89484b212550e7de38d8a58c4a3f37ed59b15b5b3350964823 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 1Y.H., Q.W., S.M., and T.M. contributed equally to this work. Edited by Steven M. Phelps, University of Texas at Austin, Austin, TX, and accepted by Editorial Board Member Joan E. Strassmann December 15, 2016 (received for review August 19, 2016) Author contributions: F.W. designed research; Y.H., Q.W., S.M., and T.M. performed research; Y.H., Q.W., S.M., T.M., L.S., X.W., Y.N., Z.N., L.Y., and Y.X. analyzed data; Y.H. and F.W. wrote the paper; and Y.N. and Y.X. prepared the sample. |
OpenAccessLink | https://www.pnas.org/content/pnas/114/5/1081.full.pdf |
PMID | 28096377 |
PQID | 1865502054 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5293045 proquest_miscellaneous_1881767180 proquest_miscellaneous_1861564678 proquest_journals_1865502054 pubmed_primary_28096377 crossref_citationtrail_10_1073_pnas_1613870114 crossref_primary_10_1073_pnas_1613870114 jstor_primary_26479139 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-31 |
PublicationDateYYYYMMDD | 2017-01-31 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2017 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Salesa MJ (e_1_3_4_15_2) 2006; 103 Edgar RC (e_1_3_4_42_2) 2004; 32 Endo H (e_1_3_4_11_2) 1999; 397 Ulu A (e_1_3_4_36_2) 2008; 52 Foote AD (e_1_3_4_5_2) 2015; 47 Chandrashekar J (e_1_3_4_37_2) 2006; 444 Davis DD (e_1_3_4_13_2) 1964 O’Leary F (e_1_3_4_35_2) 2010; 2 Labarga A (e_1_3_4_52_2) 2007; 35 Yu L (e_1_3_4_9_2) 2011; 60 Zhang J (e_1_3_4_19_2) 1997; 14 Endoh-Yamagami S (e_1_3_4_27_2) 2010; 340 Gittleman JL (e_1_3_4_41_2) 1994; 44 Capella-Gutiérrez S (e_1_3_4_43_2) 2009; 25 Herrmann W (e_1_3_4_34_2) 2002; 326 Price SA (e_1_3_4_40_2) 2012; 109 Storey JD (e_1_3_4_54_2) 2003; 100 Yang Z (e_1_3_4_23_2) 2007; 24 Thomas GWC (e_1_3_4_20_2) 2015; 32 Molotkov A (e_1_3_4_31_2) 2004; 383 Zou Z (e_1_3_4_21_2) 2015; 32 Meredith RW (e_1_3_4_50_2) 2011; 334 Parra G (e_1_3_4_16_2) 2007; 23 Merrill AE (e_1_3_4_26_2) 2009; 84 Wang X (e_1_3_4_51_2) 1996 Denoeud F (e_1_3_4_4_2) 2014; 345 Mendes FK (e_1_3_4_24_2) 2016; 65 Zhang J (e_1_3_4_53_2) 2005; 22 Darwin CR (e_1_3_4_39_2) 1859 Li R (e_1_3_4_18_2) 2010; 463 Keane TM (e_1_3_4_46_2) 2004 Wei F (e_1_3_4_8_2) 2012; 21 Glatston AR (e_1_3_4_33_2) 2011 Wesley-Hunt GD (e_1_3_4_49_2) 2005; 3 Flynn JJ (e_1_3_4_48_2) 1996 Ronquist F (e_1_3_4_47_2) 2012; 61 Mendes FK (e_1_3_4_22_2) 2016; 33 Eizirik E (e_1_3_4_7_2) 2010; 56 Antón M (e_1_3_4_12_2) 2006; 209 Jurczyk A (e_1_3_4_30_2) 2004; 166 Stern DL (e_1_3_4_2_2) 2013; 14 Nabholz B (e_1_3_4_44_2) 2011; 28 Schaller GB (e_1_3_4_10_2) 1985 Stöckel D (e_1_3_4_55_2) 2016; 32 Christin PA (e_1_3_4_1_2) 2010; 26 Mo R (e_1_3_4_29_2) 1997; 124 Gould SJ (e_1_3_4_14_2) 1980 Storz JF (e_1_3_4_3_2) 2016; 17 Jarvis ED (e_1_3_4_45_2) 2014; 346 Zhao H (e_1_3_4_38_2) 2010; 27 Blomhoff R (e_1_3_4_32_2) 2006; 66 Simão FA (e_1_3_4_17_2) 2015; 31 May SR (e_1_3_4_25_2) 2005; 287 Zou Z (e_1_3_4_6_2) 2015; 32 Dagoneau N (e_1_3_4_28_2) 2009; 84 23130639 - Mol Ecol. 2012 Dec;21(23):5660-74 22357727 - Syst Biol. 2012 May;61(3):539-42 15034147 - Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 9006072 - Development. 1997 Jan;124(1):113-23 9950422 - Nature. 1999 Jan 28;397(6717):309-10 26059717 - Bioinformatics. 2015 Oct 1;31(19):3210-2 17576686 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W6-11 25631926 - Mol Biol Evol. 2015 May;32(5):1232-6 25190796 - Science. 2014 Sep 5;345(6201):1181-4 25631925 - Mol Biol Evol. 2015 May;32(5):1237-41 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91 25504713 - Science. 2014 Dec 12;346(6215):1320-31 20573776 - Mol Biol Evol. 2010 Dec;27(12):2669-73 19442771 - Am J Hum Genet. 2009 May;84(5):706-11 12417096 - Clin Chim Acta. 2002 Dec;326(1-2):47-59 21940861 - Science. 2011 Oct 28;334(6055):521-4 20685006 - Trends Genet. 2010 Sep;26(9):400-5 15193143 - Biochem J. 2004 Oct 15;383(Pt 2):295-302 21393604 - Mol Biol Evol. 2011 Aug;28(8):2197-210 19505945 - Bioinformatics. 2009 Aug 1;25(15):1972-3 24105273 - Nat Rev Genet. 2013 Nov;14(11):751-64 20138220 - Mol Phylogenet Evol. 2010 Jul;56(1):49-63 17108952 - Nature. 2006 Nov 16;444(7117):288-94 16387860 - Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):379-82 26927960 - Syst Biol. 2016 Jul;65(4):711-21 15337773 - J Cell Biol. 2004 Aug 30;166(5):637-43 12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 20096683 - Dev Biol. 2010 Apr 1;340(1):41-53 16107592 - Mol Biol Evol. 2005 Dec;22(12):2472-9 25621460 - Nat Genet. 2015 Mar;47(3):272-5 26787660 - Bioinformatics. 2016 May 15;32(10):1502-8 22509033 - Proc Natl Acad Sci U S A. 2012 May 1;109(18):7008-12 16229832 - Dev Biol. 2005 Nov 15;287(2):378-89 16688755 - J Neurobiol. 2006 Jun;66(7):606-30 17332020 - Bioinformatics. 2007 May 1;23(9):1061-7 25862140 - Mol Biol Evol. 2015 Aug;32(8):2085-96 9159930 - Mol Biol Evol. 1997 May;14(5):527-36 22254022 - Nutrients. 2010 Mar;2(3):299-316 19361615 - Am J Hum Genet. 2009 Apr;84(4):542-9 20010809 - Nature. 2010 Jan 21;463(7279):311-7 21252386 - Syst Biol. 2011 Mar;60(2):175-87 27634870 - Mol Biol Evol. 2016 Dec;33(12 ):3299-3307 26972590 - Nat Rev Genet. 2016 Apr;17(4):239-50 17118063 - J Anat. 2006 Dec;209(6):757-64 18791465 - J Cardiovasc Pharmacol. 2008 Oct;52(4):314-23 |
References_xml | – volume-title: The Panda’s Thumb: More Reflections in Natural History year: 1980 ident: e_1_3_4_14_2 – start-page: 433 volume-title: The Terrestrial Eocene-Oligocene Transition in North America year: 1996 ident: e_1_3_4_51_2 doi: 10.1017/CBO9780511665431.022 – volume: 166 start-page: 637 year: 2004 ident: e_1_3_4_30_2 article-title: Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly publication-title: J Cell Biol doi: 10.1083/jcb.200405023 – volume: 22 start-page: 2472 year: 2005 ident: e_1_3_4_53_2 article-title: Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level publication-title: Mol Biol Evol doi: 10.1093/molbev/msi237 – volume-title: The Origin of Species year: 1859 ident: e_1_3_4_39_2 – volume: 52 start-page: 314 year: 2008 ident: e_1_3_4_36_2 article-title: Soluble epoxide hydrolase inhibitors reduce the development of atherosclerosis in apolipoprotein e-knockout mouse model publication-title: J Cardiovasc Pharmacol doi: 10.1097/FJC.0b013e318185fa3c – volume: 109 start-page: 7008 year: 2012 ident: e_1_3_4_40_2 article-title: Tempo of trophic evolution and its impact on mammalian diversification publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1117133109 – volume: 2 start-page: 299 year: 2010 ident: e_1_3_4_35_2 article-title: Vitamin B12 in health and disease publication-title: Nutrients doi: 10.3390/nu2030299 – volume-title: ModelGenerator: Amino Acid and Nucleotide Substitution Model Selection year: 2004 ident: e_1_3_4_46_2 – volume: 60 start-page: 175 year: 2011 ident: e_1_3_4_9_2 article-title: Phylogenetic utility of nuclear introns in interfamilial relationships of Caniformia (order Carnivora) publication-title: Syst Biol doi: 10.1093/sysbio/syq090 – volume: 21 start-page: 5660 year: 2012 ident: e_1_3_4_8_2 article-title: Black and white and read all over: The past, present and future of giant panda genetics publication-title: Mol Ecol doi: 10.1111/mec.12096 – volume: 334 start-page: 521 year: 2011 ident: e_1_3_4_50_2 article-title: Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification publication-title: Science doi: 10.1126/science.1211028 – volume: 23 start-page: 1061 year: 2007 ident: e_1_3_4_16_2 article-title: CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm071 – volume-title: Red Panda: Biology and Conservation of the First Panda year: 2011 ident: e_1_3_4_33_2 – volume: 100 start-page: 9440 year: 2003 ident: e_1_3_4_54_2 article-title: Statistical significance for genomewide studies publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1530509100 – volume: 31 start-page: 3210 year: 2015 ident: e_1_3_4_17_2 article-title: BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv351 – volume: 444 start-page: 288 year: 2006 ident: e_1_3_4_37_2 article-title: The receptors and cells for mammalian taste publication-title: Nature doi: 10.1038/nature05401 – volume: 32 start-page: 1232 year: 2015 ident: e_1_3_4_20_2 article-title: Determining the null model for detecting adaptive convergence from genomic data: A case study using echolocating mammals publication-title: Mol Biol Evol doi: 10.1093/molbev/msv013 – volume: 340 start-page: 41 year: 2010 ident: e_1_3_4_27_2 article-title: A mutation in the pericentrin gene causes abnormal interneuron migration to the olfactory bulb in mice publication-title: Dev Biol doi: 10.1016/j.ydbio.2010.01.017 – volume: 287 start-page: 378 year: 2005 ident: e_1_3_4_25_2 article-title: Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli publication-title: Dev Biol doi: 10.1016/j.ydbio.2005.08.050 – volume: 209 start-page: 757 year: 2006 ident: e_1_3_4_12_2 article-title: Implications of the functional anatomy of the hand and forearm of Ailurus fulgens (Carnivora, Ailuridae) for the evolution of the ‘false-thumb’ in pandas publication-title: J Anat doi: 10.1111/j.1469-7580.2006.00649.x – volume: 65 start-page: 711 year: 2016 ident: e_1_3_4_24_2 article-title: Gene tree discordance causes apparent substitution rate variation publication-title: Syst Biol doi: 10.1093/sysbio/syw018 – volume: 26 start-page: 400 year: 2010 ident: e_1_3_4_1_2 article-title: Causes and evolutionary significance of genetic convergence publication-title: Trends Genet doi: 10.1016/j.tig.2010.06.005 – volume: 17 start-page: 239 year: 2016 ident: e_1_3_4_3_2 article-title: Causes of molecular convergence and parallelism in protein evolution publication-title: Nat Rev Genet doi: 10.1038/nrg.2016.11 – volume: 103 start-page: 379 year: 2006 ident: e_1_3_4_15_2 article-title: Evidence of a false thumb in a fossil carnivore clarifies the evolution of pandas publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0504899102 – volume: 24 start-page: 1586 year: 2007 ident: e_1_3_4_23_2 article-title: PAML 4: Phylogenetic analysis by maximum likelihood publication-title: Mol Biol Evol doi: 10.1093/molbev/msm088 – volume: 25 start-page: 1972 year: 2009 ident: e_1_3_4_43_2 article-title: trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp348 – volume: 56 start-page: 49 year: 2010 ident: e_1_3_4_7_2 article-title: Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2010.01.033 – volume: 124 start-page: 113 year: 1997 ident: e_1_3_4_29_2 article-title: Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development publication-title: Development doi: 10.1242/dev.124.1.113 – volume: 326 start-page: 47 year: 2002 ident: e_1_3_4_34_2 article-title: Vegetarian lifestyle and monitoring of vitamin B-12 status publication-title: Clin Chim Acta doi: 10.1016/S0009-8981(02)00307-8 – volume-title: The Giant Panda: A Morphological Study of Evolutionary Mechanisms year: 1964 ident: e_1_3_4_13_2 – volume: 33 start-page: 3299 year: 2016 ident: e_1_3_4_22_2 article-title: Gene tree discordance can generate patterns of diminishing convergence over time publication-title: Mol Biol Evol doi: 10.1093/molbev/msw197 – volume: 463 start-page: 311 year: 2010 ident: e_1_3_4_18_2 article-title: The sequence and de novo assembly of the giant panda genome publication-title: Nature doi: 10.1038/nature08696 – volume: 3 start-page: 1 year: 2005 ident: e_1_3_4_49_2 article-title: Phylogeny of the carnivora: Basal relationships among the carnivoramorphans, and assessment of the position of ‘miacoidea’ relative to carnivore publication-title: J Syst Palaeontol doi: 10.1017/S1477201904001518 – volume: 28 start-page: 2197 year: 2011 ident: e_1_3_4_44_2 article-title: Dynamic evolution of base composition: Causes and consequences in avian phylogenomics publication-title: Mol Biol Evol doi: 10.1093/molbev/msr047 – volume: 383 start-page: 295 year: 2004 ident: e_1_3_4_31_2 article-title: Opposing actions of cellular retinol-binding protein and alcohol dehydrogenase control the balance between retinol storage and degradation publication-title: Biochem J doi: 10.1042/BJ20040621 – volume: 35 start-page: W6 year: 2007 ident: e_1_3_4_52_2 article-title: Web services at the European bioinformatics institute publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm291 – volume: 14 start-page: 527 year: 1997 ident: e_1_3_4_19_2 article-title: Detection of convergent and parallel evolution at the amino acid sequence level publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a025789 – volume: 47 start-page: 272 year: 2015 ident: e_1_3_4_5_2 article-title: Convergent evolution of the genomes of marine mammals publication-title: Nat Genet doi: 10.1038/ng.3198 – volume: 27 start-page: 2669 year: 2010 ident: e_1_3_4_38_2 article-title: Pseudogenization of the umami taste receptor gene Tas1r1 in the giant panda coincided with its dietary switch to bamboo publication-title: Mol Biol Evol doi: 10.1093/molbev/msq153 – volume: 32 start-page: 1792 year: 2004 ident: e_1_3_4_42_2 article-title: MUSCLE: Multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh340 – volume: 397 start-page: 309 year: 1999 ident: e_1_3_4_11_2 article-title: Role of the giant panda’s ‘pseudo-thumb’ publication-title: Nature doi: 10.1038/16830 – volume: 84 start-page: 706 year: 2009 ident: e_1_3_4_28_2 article-title: DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2009.04.016 – start-page: 542 volume-title: Carnivore Behavior, Ecology, and Evolution year: 1996 ident: e_1_3_4_48_2 – volume: 44 start-page: 456 year: 1994 ident: e_1_3_4_41_2 article-title: Are the pandas successful specialists or evolutionary failures? publication-title: Bioscience doi: 10.2307/1312297 – volume: 14 start-page: 751 year: 2013 ident: e_1_3_4_2_2 article-title: The genetic causes of convergent evolution publication-title: Nat Rev Genet doi: 10.1038/nrg3483 – volume-title: The Giant Pandas of Wolong year: 1985 ident: e_1_3_4_10_2 – volume: 84 start-page: 542 year: 2009 ident: e_1_3_4_26_2 article-title: Ciliary abnormalities due to defects in the retrograde transport protein DYNC2H1 in short-rib polydactyly syndrome publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2009.03.015 – volume: 32 start-page: 2085 year: 2015 ident: e_1_3_4_21_2 article-title: Are convergent and parallel amino acid substitutions in protein evolution more prevalent than neutral expectations? publication-title: Mol Biol Evol doi: 10.1093/molbev/msv091 – volume: 66 start-page: 606 year: 2006 ident: e_1_3_4_32_2 article-title: Overview of retinoid metabolism and function publication-title: J Neurobiol doi: 10.1002/neu.20242 – volume: 61 start-page: 539 year: 2012 ident: e_1_3_4_47_2 article-title: MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space publication-title: Syst Biol doi: 10.1093/sysbio/sys029 – volume: 345 start-page: 1181 year: 2014 ident: e_1_3_4_4_2 article-title: The coffee genome provides insight into the convergent evolution of caffeine biosynthesis publication-title: Science doi: 10.1126/science.1255274 – volume: 32 start-page: 1237 year: 2015 ident: e_1_3_4_6_2 article-title: No genome-wide protein sequence convergence for echolocation publication-title: Mol Biol Evol doi: 10.1093/molbev/msv014 – volume: 32 start-page: 1502 year: 2016 ident: e_1_3_4_55_2 article-title: Multi-omics enrichment analysis using the GeneTrail2 web service publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv770 – volume: 346 start-page: 1320 year: 2014 ident: e_1_3_4_45_2 article-title: Whole-genome analyses resolve early branches in the tree of life of modern birds publication-title: Science doi: 10.1126/science.1253451 – reference: 23130639 - Mol Ecol. 2012 Dec;21(23):5660-74 – reference: 22509033 - Proc Natl Acad Sci U S A. 2012 May 1;109(18):7008-12 – reference: 15193143 - Biochem J. 2004 Oct 15;383(Pt 2):295-302 – reference: 19442771 - Am J Hum Genet. 2009 May;84(5):706-11 – reference: 20573776 - Mol Biol Evol. 2010 Dec;27(12):2669-73 – reference: 18791465 - J Cardiovasc Pharmacol. 2008 Oct;52(4):314-23 – reference: 22254022 - Nutrients. 2010 Mar;2(3):299-316 – reference: 22357727 - Syst Biol. 2012 May;61(3):539-42 – reference: 25631926 - Mol Biol Evol. 2015 May;32(5):1232-6 – reference: 16387860 - Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):379-82 – reference: 26787660 - Bioinformatics. 2016 May 15;32(10):1502-8 – reference: 21940861 - Science. 2011 Oct 28;334(6055):521-4 – reference: 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91 – reference: 20010809 - Nature. 2010 Jan 21;463(7279):311-7 – reference: 21393604 - Mol Biol Evol. 2011 Aug;28(8):2197-210 – reference: 20096683 - Dev Biol. 2010 Apr 1;340(1):41-53 – reference: 19505945 - Bioinformatics. 2009 Aug 1;25(15):1972-3 – reference: 27634870 - Mol Biol Evol. 2016 Dec;33(12 ):3299-3307 – reference: 12417096 - Clin Chim Acta. 2002 Dec;326(1-2):47-59 – reference: 17108952 - Nature. 2006 Nov 16;444(7117):288-94 – reference: 20138220 - Mol Phylogenet Evol. 2010 Jul;56(1):49-63 – reference: 26927960 - Syst Biol. 2016 Jul;65(4):711-21 – reference: 25621460 - Nat Genet. 2015 Mar;47(3):272-5 – reference: 25631925 - Mol Biol Evol. 2015 May;32(5):1237-41 – reference: 26059717 - Bioinformatics. 2015 Oct 1;31(19):3210-2 – reference: 20685006 - Trends Genet. 2010 Sep;26(9):400-5 – reference: 24105273 - Nat Rev Genet. 2013 Nov;14(11):751-64 – reference: 17576686 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W6-11 – reference: 21252386 - Syst Biol. 2011 Mar;60(2):175-87 – reference: 12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 – reference: 17118063 - J Anat. 2006 Dec;209(6):757-64 – reference: 25862140 - Mol Biol Evol. 2015 Aug;32(8):2085-96 – reference: 16229832 - Dev Biol. 2005 Nov 15;287(2):378-89 – reference: 19361615 - Am J Hum Genet. 2009 Apr;84(4):542-9 – reference: 15337773 - J Cell Biol. 2004 Aug 30;166(5):637-43 – reference: 15034147 - Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 – reference: 16688755 - J Neurobiol. 2006 Jun;66(7):606-30 – reference: 17332020 - Bioinformatics. 2007 May 1;23(9):1061-7 – reference: 25504713 - Science. 2014 Dec 12;346(6215):1320-31 – reference: 9006072 - Development. 1997 Jan;124(1):113-23 – reference: 16107592 - Mol Biol Evol. 2005 Dec;22(12):2472-9 – reference: 9950422 - Nature. 1999 Jan 28;397(6717):309-10 – reference: 25190796 - Science. 2014 Sep 5;345(6201):1181-4 – reference: 26972590 - Nat Rev Genet. 2016 Apr;17(4):239-50 – reference: 9159930 - Mol Biol Evol. 1997 May;14(5):527-36 |
SSID | ssj0009580 |
Score | 2.5990436 |
Snippet | Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The... The giant panda and red panda are obligate bamboo-feeders that independently evolved from meat-eating ancestors and possess adaptive pseudothumbs, making them... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1081 |
SubjectTerms | Adaptation, Physiological Ailuridae - classification Ailuridae - genetics Ailuropoda melanoleuca Ailurus fulgens Amino acids Animals Bamboo Bambusa - chemistry Biological Evolution Biological Sciences Carnivora Comparative analysis Diet Digestion - genetics Evolution Feeding Behavior Genome Genomics Herbivory - genetics Mammals - classification Mammals - genetics Pandas Phenotype Phylogeny Pseudogenes Receptors, G-Protein-Coupled - genetics Sequence Alignment Sequence Homology, Nucleic Acid Species Specificity Taste Buds Toes - anatomy & histology Toes - physiology Ursidae - classification Ursidae - genetics Vitamins |
Title | Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas |
URI | https://www.jstor.org/stable/26479139 https://www.ncbi.nlm.nih.gov/pubmed/28096377 https://www.proquest.com/docview/1865502054 https://www.proquest.com/docview/1861564678 https://www.proquest.com/docview/1881767180 https://pubmed.ncbi.nlm.nih.gov/PMC5293045 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFbcAgMJCReBiqUpo4aZzHqQIqpFVF6qS-Fdtxt0prWtF2Qvxp_HXc2U7iVgXBXqIqcX409_X8nXv3HSHvJDZB4rMsnBW5CJNIFaHMmQrBHceJzpXMUiwUvhz2BlfJl0k6abV-eVlL243sqJ8H60ruY1XYB3bFKtn_sGx9UdgBn8G-sAULw_afbNz3pLtRbHWBksuoyYSayCafHEsrN2195x6jTstCuinFAih2iKSxvG5fA05ctjlw0BUuMKx95jqqZ7p1lVcwrBYSL5qyFOcr1u2wPRo2TY4HW-Pr53JZzwJmz9d5syRuFmJvtmJv1xge7MdcLP31iQgTWSvH7sl7H3wU3zHHMFkmtpy6o60vBioT9hLbTbR21rbk1KEy9Vxv1LW9X9w0jh2kDk4R4NOwr3Ep1h1guwz8lbumB5jVwiAm5hDgMddmZleVe3TZT4EpASF-QB7GEKJg94zPk8gTfOa2_Ml9sUpWKmMf9u6NetTuRjvkyObHHop89hN4PUY0PiaPXShDLywuT0hLl0_ISfXW6blTNH__lHzzgEoroFIHVNoAldZApQ6oFHBGd4BKDVAp4BMuUFAL1Gfk6tPHcX8QutYeoQLfsAmZVDovupKnUs-U4nnCEwksCuJlnRWa8YKLlKtEsBnLdJHmMkplKhlDtaKEx-yUHJXLUr8gVAEnLXIIIyTEBiLryhnDJpVCxTrPCxEFpFO906lyuvfYfuV2avIvMjZFe0wbewTkvD5hZSVf_jz01BipHgfhRYZCuwE5q6w2dQ4DzsMicAjPUjjvbX0Y3Dn-RydKvdyaMSjfBBTyb2N4lPWAVHYD8twCoXkAh6SAZDsQqQegnPzukXJ-Y2TlHZ5f3vvMV-RR4wDOyNHm-1a_Bsq-kW_Mb-M3a7fvNQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+genomics+reveals+convergent+evolution+between+the+bamboo-eating+giant+and+red+pandas&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hu%2C+Yibo&rft.au=Wu%2C+Qi&rft.au=Ma%2C+Shuai&rft.au=Ma%2C+Tianxiao&rft.date=2017-01-31&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=5&rft.spage=1081&rft.epage=1086&rft_id=info:doi/10.1073%2Fpnas.1613870114&rft_id=info%3Apmid%2F28096377&rft.externalDocID=PMC5293045 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |