Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas

Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to different families in the order Carnivora, but both have evolved...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 5; pp. 1081 - 1086
Main Authors Hu, Yibo, Wu, Qi, Ma, Shuai, Ma, Tianxiao, Shan, Lei, Wang, Xiao, Nie, Yonggang, Ning, Zemin, Yan, Li, Xiu, Yunfang, Wei, Fuwen
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 31.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to different families in the order Carnivora, but both have evolved a specialized bamboo diet and adaptive pseudothumb, representing a classic model of convergent evolution. However, the genetic bases of these morphological and physiological convergences remain unknown. Through de novo sequencing the red panda genome and improving the giant panda genome assembly with added data, we identified genomic signatures of convergent evolution. Limb development genes DYNC2H1 and PCNT have undergone adaptive convergence and may be important candidate genes for pseudothumb development. As evolutionary responses to a bamboo diet, adaptive convergence has occurred in genes involved in the digestion and utilization of bamboo nutrients such as essential amino acids, fatty acids, and vitamins. Similarly, the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings offer insights into genetic convergence mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet.
AbstractList Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to different families in the order Carnivora, but both have evolved a specialized bamboo diet and adaptive pseudothumb, representing a classic model of convergent evolution. However, the genetic bases of these morphological and physiological convergences remain unknown. Through de novo sequencing the red panda genome and improving the giant panda genome assembly with added data, we identified genomic signatures of convergent evolution. Limb development genes DYNC2H1 and PCNT have undergone adaptive convergence and may be important candidate genes for pseudothumb development. As evolutionary responses to a bamboo diet, adaptive convergence has occurred in genes involved in the digestion and utilization of bamboo nutrients such as essential amino acids, fatty acids, and vitamins. Similarly, the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings offer insights into genetic convergence mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet.
The giant panda and red panda are obligate bamboo-feeders that independently evolved from meat-eating ancestors and possess adaptive pseudothumbs, making them ideal models for studying convergent evolution. In this study, we identified genomic signatures of convergent evolution associated with bamboo eating. Comparative genomic analyses revealed adaptively convergent genes potentially involved with pseudothumb development and essential bamboo nutrient utilization. We also found that the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings provide insights into genetic mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet in both pandas and offer an example of genome-scale analyses for detecting convergent evolution. Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda ( Ailuropoda melanoleuca ) and red panda ( Ailurus fulgens ) belong to different families in the order Carnivora, but both have evolved a specialized bamboo diet and adaptive pseudothumb, representing a classic model of convergent evolution. However, the genetic bases of these morphological and physiological convergences remain unknown. Through de novo sequencing the red panda genome and improving the giant panda genome assembly with added data, we identified genomic signatures of convergent evolution. Limb development genes DYNC2H1 and PCNT have undergone adaptive convergence and may be important candidate genes for pseudothumb development. As evolutionary responses to a bamboo diet, adaptive convergence has occurred in genes involved in the digestion and utilization of bamboo nutrients such as essential amino acids, fatty acids, and vitamins. Similarly, the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings offer insights into genetic convergence mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet.
Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to different families in the order Carnivora, but both have evolved a specialized bamboo diet and adaptive pseudothumb, representing a classic model of convergent evolution. However, the genetic bases of these morphological and physiological convergences remain unknown. Through de novo sequencing the red panda genome and improving the giant panda genome assembly with added data, we identified genomic signatures of convergent evolution. Limb development genes DYNC2H1 and PCNT have undergone adaptive convergence and may be important candidate genes for pseudothumb development. As evolutionary responses to a bamboo diet, adaptive convergence has occurred in genes involved in the digestion and utilization of bamboo nutrients such as essential amino acids, fatty acids, and vitamins. Similarly, the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings offer insights into genetic convergence mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet.Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to different families in the order Carnivora, but both have evolved a specialized bamboo diet and adaptive pseudothumb, representing a classic model of convergent evolution. However, the genetic bases of these morphological and physiological convergences remain unknown. Through de novo sequencing the red panda genome and improving the giant panda genome assembly with added data, we identified genomic signatures of convergent evolution. Limb development genes DYNC2H1 and PCNT have undergone adaptive convergence and may be important candidate genes for pseudothumb development. As evolutionary responses to a bamboo diet, adaptive convergence has occurred in genes involved in the digestion and utilization of bamboo nutrients such as essential amino acids, fatty acids, and vitamins. Similarly, the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings offer insights into genetic convergence mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet.
Author Wu, Qi
Ning, Zemin
Hu, Yibo
Yan, Li
Ma, Shuai
Ma, Tianxiao
Xiu, Yunfang
Shan, Lei
Nie, Yonggang
Wei, Fuwen
Wang, Xiao
Author_xml – sequence: 1
  givenname: Yibo
  surname: Hu
  fullname: Hu, Yibo
  organization: Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 2
  givenname: Qi
  surname: Wu
  fullname: Wu, Qi
  organization: Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 3
  givenname: Shuai
  surname: Ma
  fullname: Ma, Shuai
  organization: University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 4
  givenname: Tianxiao
  surname: Ma
  fullname: Ma, Tianxiao
  organization: University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 5
  givenname: Lei
  surname: Shan
  fullname: Shan, Lei
  organization: Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 6
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
  organization: University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 7
  givenname: Yonggang
  surname: Nie
  fullname: Nie, Yonggang
  organization: Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 8
  givenname: Zemin
  surname: Ning
  fullname: Ning, Zemin
  organization: Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
– sequence: 9
  givenname: Li
  surname: Yan
  fullname: Yan, Li
  organization: Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 10
  givenname: Yunfang
  surname: Xiu
  fullname: Xiu, Yunfang
  organization: Straits (Fuzhou) Giant Panda Research and Exchange Center, Fuzhou 350001, China
– sequence: 11
  givenname: Fuwen
  surname: Wei
  fullname: Wei, Fuwen
  organization: University of Chinese Academy of Sciences, Beijing 100049, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28096377$$D View this record in MEDLINE/PubMed
BookMark eNqNksFvFCEUxolpY7fVsyfNJF56mRYGGOBiYjZWTZr00p4RmLdbNjMwwswY_3vZbGu1iYknCO_3ffke752ioxADIPSG4AuCBb0cg8kXpCVUCkwIe4FWBCtSt0zhI7TCuBG1ZA07Qac57zDGikv8Ep00EquWCrFC39ZxGE0yk1-g2kKIg3e5SrCA6XPlYlggleepgiX28-RjqCxMPwBCNd1DZc1gY6yh6MO22npTSBO6YtBVY7mY_Aodb4oVvH44z9Dd1afb9Zf6-ubz1_XH69px1kw1tQ5Uh63kFjbOScUksw1pOMcgOqCyk4ZLxwzdUAEdV5Zwyy2lvHTCZEPP0IeD7zjbATpXMifT6zH5waSfOhqv_64Ef6-3cdG8URQzXgzOHwxS_D5DnvTgs4O-NwHinDWRkohWEIn_A20Jb1krZEHfP0N3cU6h_MSeKt01mLNCvfsz_O_Uj3MqAD8ALsWcE2y085PZj6P04ntNsN7vg97vg37ah6K7fKZ7tP634u1BsctTTE9JWiYUoYr-AqTlwr4
CitedBy_id crossref_primary_10_1016_j_cub_2021_01_073
crossref_primary_10_1186_s13059_019_1889_7
crossref_primary_10_3389_fvets_2025_1509698
crossref_primary_10_1101_gr_237586_118
crossref_primary_10_1016_j_xinn_2021_100185
crossref_primary_10_3389_fgene_2022_863617
crossref_primary_10_1073_pnas_1805348115
crossref_primary_10_1073_pnas_1711437114
crossref_primary_10_1126_sciadv_aax5751
crossref_primary_10_1111_mec_16204
crossref_primary_10_1016_j_scitotenv_2021_145316
crossref_primary_10_3390_ani11020251
crossref_primary_10_1016_j_cub_2021_03_084
crossref_primary_10_1360_SSV_2024_0025
crossref_primary_10_1016_j_cub_2019_03_067
crossref_primary_10_1038_s41598_022_19742_z
crossref_primary_10_1007_s11427_022_2233_x
crossref_primary_10_1016_j_cub_2019_04_021
crossref_primary_10_1093_lifemeta_loac040
crossref_primary_10_3390_ani13060979
crossref_primary_10_1038_s41467_017_01491_7
crossref_primary_10_3389_fmicb_2020_551038
crossref_primary_10_1093_jhered_esab021
crossref_primary_10_3390_microorganisms12030478
crossref_primary_10_1186_s12864_021_07531_3
crossref_primary_10_3389_fmicb_2018_01411
crossref_primary_10_1093_chemse_bjac033
crossref_primary_10_1007_s10722_024_01989_2
crossref_primary_10_1038_nature_2017_21300
crossref_primary_10_1007_s00248_017_1114_8
crossref_primary_10_1038_s42003_021_02173_3
crossref_primary_10_1093_nar_gkac954
crossref_primary_10_1177_1178646917704661
crossref_primary_10_1098_rspb_2023_2448
crossref_primary_10_1186_s12864_020_07269_4
crossref_primary_10_1038_s42003_023_04415_y
crossref_primary_10_1016_j_scitotenv_2021_146659
crossref_primary_10_1016_j_beproc_2022_104688
crossref_primary_10_1146_annurev_genom_111219_080427
crossref_primary_10_1093_cz_zoy015
crossref_primary_10_1016_j_cub_2018_05_008
crossref_primary_10_1016_j_scitotenv_2020_139424
crossref_primary_10_1016_j_csbj_2021_08_025
crossref_primary_10_7717_peerj_4140
crossref_primary_10_1093_nsr_nwac174
crossref_primary_10_1146_annurev_animal_021022_054730
crossref_primary_10_1186_s13059_024_03288_6
crossref_primary_10_1016_j_zool_2020_125775
crossref_primary_10_2174_1389202920666190313162702
crossref_primary_10_1186_s12898_018_0161_4
crossref_primary_10_3389_fmicb_2021_633075
crossref_primary_10_1101_gr_278476_123
crossref_primary_10_1111_1749_4877_12652
crossref_primary_10_3390_ani10122352
crossref_primary_10_1111_mec_16306
crossref_primary_10_1590_1678_4685_gmb_2022_0384
crossref_primary_10_1080_08912963_2021_2006195
crossref_primary_10_1093_nar_gkac924
crossref_primary_10_3389_fmars_2023_1170704
crossref_primary_10_1098_rspb_2023_0538
crossref_primary_10_1111_1749_4877_12291
crossref_primary_10_3389_fmed_2022_983992
crossref_primary_10_18632_aging_103783
crossref_primary_10_1186_s12864_020_6690_1
crossref_primary_10_1007_s42995_023_00197_8
crossref_primary_10_1111_mec_15610
crossref_primary_10_1073_pnas_2021516118
crossref_primary_10_1360_SSV_2024_0167
crossref_primary_10_1101_gr_278930_124
crossref_primary_10_1186_s12864_023_09111_z
crossref_primary_10_1007_s10592_018_1072_9
crossref_primary_10_1016_j_cois_2019_09_005
crossref_primary_10_1007_s13225_022_00502_3
crossref_primary_10_1538_expanim_19_0021
crossref_primary_10_1016_j_isci_2025_111776
crossref_primary_10_1002_ece3_6327
crossref_primary_10_52547_JAD_2021_3_2_6
crossref_primary_10_1093_gbe_evaa029
crossref_primary_10_1111_mec_16018
crossref_primary_10_1016_j_ygeno_2022_110501
crossref_primary_10_1111_ede_12264
crossref_primary_10_1186_s12862_022_02033_6
crossref_primary_10_3390_genes13081446
crossref_primary_10_1038_s42003_023_05359_z
crossref_primary_10_59717_j_xinn_life_2024_100066
crossref_primary_10_1111_1749_4877_12676
crossref_primary_10_1016_j_tig_2020_04_004
crossref_primary_10_3389_fmicb_2022_1009588
crossref_primary_10_1038_s41396_022_01247_2
crossref_primary_10_1186_s12862_021_01753_5
crossref_primary_10_1016_j_gecco_2023_e02428
crossref_primary_10_3390_su17020755
crossref_primary_10_3389_fmicb_2023_1276620
crossref_primary_10_1098_rspb_2021_0346
crossref_primary_10_1002_ece3_8470
crossref_primary_10_3389_fgene_2023_1198977
crossref_primary_10_3390_biology13120956
crossref_primary_10_1038_s41437_018_0180_0
crossref_primary_10_1093_molbev_msaa068
crossref_primary_10_1186_s40246_019_0210_x
crossref_primary_10_3897_zookeys_923_39665
crossref_primary_10_1007_s10123_024_00583_x
crossref_primary_10_1038_s41598_024_55549_w
crossref_primary_10_1111_1755_0998_13443
crossref_primary_10_1126_sciadv_aao5441
crossref_primary_10_1038_s41598_021_97850_y
crossref_primary_10_1098_rstb_2018_0248
crossref_primary_10_1186_s13071_024_06402_6
crossref_primary_10_1093_molbev_msz127
crossref_primary_10_2139_ssrn_3363854
crossref_primary_10_1007_s13199_020_00673_0
crossref_primary_10_1073_pnas_1813593115
crossref_primary_10_1080_02604027_2023_2226594
crossref_primary_10_1093_nsr_nwaa002
crossref_primary_10_1093_gbe_evae040
crossref_primary_10_1016_j_xplc_2020_100117
crossref_primary_10_1038_s41598_022_13402_y
crossref_primary_10_3390_genes9040198
crossref_primary_10_1038_s41559_020_1209_3
crossref_primary_10_7717_peerj_12559
crossref_primary_10_1101_cshperspect_a041451
crossref_primary_10_1111_mec_15542
crossref_primary_10_1016_j_tig_2019_09_009
crossref_primary_10_1038_s41467_023_37909_8
crossref_primary_10_3390_genes14030619
crossref_primary_10_1093_nsr_nwaa076
crossref_primary_10_1093_gbe_evab103
crossref_primary_10_7717_peerj_10528
crossref_primary_10_1038_nrg_2017_51
crossref_primary_10_1073_pnas_1910471116
crossref_primary_10_1111_1749_4877_12851
crossref_primary_10_1007_s42991_023_00386_z
crossref_primary_10_3389_fmolb_2017_00081
crossref_primary_10_1007_s11427_020_1748_0
crossref_primary_10_3389_fevo_2022_999411
crossref_primary_10_3390_ani14233512
crossref_primary_10_7554_eLife_55414
crossref_primary_10_1002_ece3_9185
crossref_primary_10_1093_gbe_evz070
crossref_primary_10_1093_molbev_msaa243
crossref_primary_10_1111_eva_13731
crossref_primary_10_1126_sciadv_abd2274
crossref_primary_10_3389_fevo_2021_736741
crossref_primary_10_1016_j_isci_2023_107307
crossref_primary_10_1093_gbe_evab038
crossref_primary_10_1093_bioadv_vbae070
crossref_primary_10_1016_j_yhbeh_2020_104771
crossref_primary_10_1186_s12870_022_03752_0
crossref_primary_10_1093_cz_zoaa080
crossref_primary_10_2139_ssrn_3316802
crossref_primary_10_1111_eva_12915
crossref_primary_10_1111_evo_14229
crossref_primary_10_1007_s11427_020_1750_7
crossref_primary_10_3390_ani12243572
crossref_primary_10_1016_j_jgg_2018_09_005
crossref_primary_10_1128_mSphere_00229_18
crossref_primary_10_1371_journal_pone_0311518
crossref_primary_10_1152_physrev_00017_2024
crossref_primary_10_3389_fmolb_2021_716544
crossref_primary_10_3390_genes12091336
crossref_primary_10_1002_ece3_5797
crossref_primary_10_1016_j_cub_2018_12_051
crossref_primary_10_3390_rs14061302
crossref_primary_10_1098_rspb_2024_0818
crossref_primary_10_3389_fevo_2023_1107034
crossref_primary_10_1016_j_gene_2018_02_037
crossref_primary_10_1007_s11427_019_9468_8
crossref_primary_10_3390_genes11010050
crossref_primary_10_1098_rspb_2017_0955
crossref_primary_10_1093_molbev_msaf012
crossref_primary_10_1111_1749_4877_12352
crossref_primary_10_1093_molbev_msz232
crossref_primary_10_3389_fmicb_2020_01061
crossref_primary_10_3390_ani14121795
Cites_doi 10.1017/CBO9780511665431.022
10.1083/jcb.200405023
10.1093/molbev/msi237
10.1097/FJC.0b013e318185fa3c
10.1073/pnas.1117133109
10.3390/nu2030299
10.1093/sysbio/syq090
10.1111/mec.12096
10.1126/science.1211028
10.1093/bioinformatics/btm071
10.1073/pnas.1530509100
10.1093/bioinformatics/btv351
10.1038/nature05401
10.1093/molbev/msv013
10.1016/j.ydbio.2010.01.017
10.1016/j.ydbio.2005.08.050
10.1111/j.1469-7580.2006.00649.x
10.1093/sysbio/syw018
10.1016/j.tig.2010.06.005
10.1038/nrg.2016.11
10.1073/pnas.0504899102
10.1093/molbev/msm088
10.1093/bioinformatics/btp348
10.1016/j.ympev.2010.01.033
10.1242/dev.124.1.113
10.1016/S0009-8981(02)00307-8
10.1093/molbev/msw197
10.1038/nature08696
10.1017/S1477201904001518
10.1093/molbev/msr047
10.1042/BJ20040621
10.1093/nar/gkm291
10.1093/oxfordjournals.molbev.a025789
10.1038/ng.3198
10.1093/molbev/msq153
10.1093/nar/gkh340
10.1038/16830
10.1016/j.ajhg.2009.04.016
10.2307/1312297
10.1038/nrg3483
10.1016/j.ajhg.2009.03.015
10.1093/molbev/msv091
10.1002/neu.20242
10.1093/sysbio/sys029
10.1126/science.1255274
10.1093/molbev/msv014
10.1093/bioinformatics/btv770
10.1126/science.1253451
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Jan 31, 2017
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Jan 31, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1613870114
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
Virology and AIDS Abstracts
MEDLINE - Academic

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Convergent evolution between giant and red pandas
EISSN 1091-6490
EndPage 1086
ExternalDocumentID PMC5293045
4312590581
28096377
10_1073_pnas_1613870114
26479139
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
Feature
GrantInformation_xml – fundername: Chinese Ministry of Science and Technology | Department of S and T for Social Development (Department of S&T for Social Development)
  grantid: 2016YFC0503200
– fundername: Chinese Academy of Sciences (CAS)
  grantid: KJZD-EW-L07
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 91531302
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 31470441
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c542t-3bce9d0b85befcc89484b212550e7de38d8a58c4a3f37ed59b15b5b3350964823
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:07:56 EDT 2025
Fri Jul 11 16:26:14 EDT 2025
Fri Jul 11 12:35:10 EDT 2025
Mon Jun 30 08:39:34 EDT 2025
Thu Apr 03 06:58:31 EDT 2025
Tue Jul 01 03:19:28 EDT 2025
Thu Apr 24 22:57:41 EDT 2025
Fri May 30 11:46:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords pseudogenization
positive selection
phenotype convergence
amino acid convergence
de novo genome
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c542t-3bce9d0b85befcc89484b212550e7de38d8a58c4a3f37ed59b15b5b3350964823
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
1Y.H., Q.W., S.M., and T.M. contributed equally to this work.
Edited by Steven M. Phelps, University of Texas at Austin, Austin, TX, and accepted by Editorial Board Member Joan E. Strassmann December 15, 2016 (received for review August 19, 2016)
Author contributions: F.W. designed research; Y.H., Q.W., S.M., and T.M. performed research; Y.H., Q.W., S.M., T.M., L.S., X.W., Y.N., Z.N., L.Y., and Y.X. analyzed data; Y.H. and F.W. wrote the paper; and Y.N. and Y.X. prepared the sample.
OpenAccessLink https://www.pnas.org/content/pnas/114/5/1081.full.pdf
PMID 28096377
PQID 1865502054
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5293045
proquest_miscellaneous_1881767180
proquest_miscellaneous_1861564678
proquest_journals_1865502054
pubmed_primary_28096377
crossref_citationtrail_10_1073_pnas_1613870114
crossref_primary_10_1073_pnas_1613870114
jstor_primary_26479139
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-31
PublicationDateYYYYMMDD 2017-01-31
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-31
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Salesa MJ (e_1_3_4_15_2) 2006; 103
Edgar RC (e_1_3_4_42_2) 2004; 32
Endo H (e_1_3_4_11_2) 1999; 397
Ulu A (e_1_3_4_36_2) 2008; 52
Foote AD (e_1_3_4_5_2) 2015; 47
Chandrashekar J (e_1_3_4_37_2) 2006; 444
Davis DD (e_1_3_4_13_2) 1964
O’Leary F (e_1_3_4_35_2) 2010; 2
Labarga A (e_1_3_4_52_2) 2007; 35
Yu L (e_1_3_4_9_2) 2011; 60
Zhang J (e_1_3_4_19_2) 1997; 14
Endoh-Yamagami S (e_1_3_4_27_2) 2010; 340
Gittleman JL (e_1_3_4_41_2) 1994; 44
Capella-Gutiérrez S (e_1_3_4_43_2) 2009; 25
Herrmann W (e_1_3_4_34_2) 2002; 326
Price SA (e_1_3_4_40_2) 2012; 109
Storey JD (e_1_3_4_54_2) 2003; 100
Yang Z (e_1_3_4_23_2) 2007; 24
Thomas GWC (e_1_3_4_20_2) 2015; 32
Molotkov A (e_1_3_4_31_2) 2004; 383
Zou Z (e_1_3_4_21_2) 2015; 32
Meredith RW (e_1_3_4_50_2) 2011; 334
Parra G (e_1_3_4_16_2) 2007; 23
Merrill AE (e_1_3_4_26_2) 2009; 84
Wang X (e_1_3_4_51_2) 1996
Denoeud F (e_1_3_4_4_2) 2014; 345
Mendes FK (e_1_3_4_24_2) 2016; 65
Zhang J (e_1_3_4_53_2) 2005; 22
Darwin CR (e_1_3_4_39_2) 1859
Li R (e_1_3_4_18_2) 2010; 463
Keane TM (e_1_3_4_46_2) 2004
Wei F (e_1_3_4_8_2) 2012; 21
Glatston AR (e_1_3_4_33_2) 2011
Wesley-Hunt GD (e_1_3_4_49_2) 2005; 3
Flynn JJ (e_1_3_4_48_2) 1996
Ronquist F (e_1_3_4_47_2) 2012; 61
Mendes FK (e_1_3_4_22_2) 2016; 33
Eizirik E (e_1_3_4_7_2) 2010; 56
Antón M (e_1_3_4_12_2) 2006; 209
Jurczyk A (e_1_3_4_30_2) 2004; 166
Stern DL (e_1_3_4_2_2) 2013; 14
Nabholz B (e_1_3_4_44_2) 2011; 28
Schaller GB (e_1_3_4_10_2) 1985
Stöckel D (e_1_3_4_55_2) 2016; 32
Christin PA (e_1_3_4_1_2) 2010; 26
Mo R (e_1_3_4_29_2) 1997; 124
Gould SJ (e_1_3_4_14_2) 1980
Storz JF (e_1_3_4_3_2) 2016; 17
Jarvis ED (e_1_3_4_45_2) 2014; 346
Zhao H (e_1_3_4_38_2) 2010; 27
Blomhoff R (e_1_3_4_32_2) 2006; 66
Simão FA (e_1_3_4_17_2) 2015; 31
May SR (e_1_3_4_25_2) 2005; 287
Zou Z (e_1_3_4_6_2) 2015; 32
Dagoneau N (e_1_3_4_28_2) 2009; 84
23130639 - Mol Ecol. 2012 Dec;21(23):5660-74
22357727 - Syst Biol. 2012 May;61(3):539-42
15034147 - Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
9006072 - Development. 1997 Jan;124(1):113-23
9950422 - Nature. 1999 Jan 28;397(6717):309-10
26059717 - Bioinformatics. 2015 Oct 1;31(19):3210-2
17576686 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W6-11
25631926 - Mol Biol Evol. 2015 May;32(5):1232-6
25190796 - Science. 2014 Sep 5;345(6201):1181-4
25631925 - Mol Biol Evol. 2015 May;32(5):1237-41
17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91
25504713 - Science. 2014 Dec 12;346(6215):1320-31
20573776 - Mol Biol Evol. 2010 Dec;27(12):2669-73
19442771 - Am J Hum Genet. 2009 May;84(5):706-11
12417096 - Clin Chim Acta. 2002 Dec;326(1-2):47-59
21940861 - Science. 2011 Oct 28;334(6055):521-4
20685006 - Trends Genet. 2010 Sep;26(9):400-5
15193143 - Biochem J. 2004 Oct 15;383(Pt 2):295-302
21393604 - Mol Biol Evol. 2011 Aug;28(8):2197-210
19505945 - Bioinformatics. 2009 Aug 1;25(15):1972-3
24105273 - Nat Rev Genet. 2013 Nov;14(11):751-64
20138220 - Mol Phylogenet Evol. 2010 Jul;56(1):49-63
17108952 - Nature. 2006 Nov 16;444(7117):288-94
16387860 - Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):379-82
26927960 - Syst Biol. 2016 Jul;65(4):711-21
15337773 - J Cell Biol. 2004 Aug 30;166(5):637-43
12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5
20096683 - Dev Biol. 2010 Apr 1;340(1):41-53
16107592 - Mol Biol Evol. 2005 Dec;22(12):2472-9
25621460 - Nat Genet. 2015 Mar;47(3):272-5
26787660 - Bioinformatics. 2016 May 15;32(10):1502-8
22509033 - Proc Natl Acad Sci U S A. 2012 May 1;109(18):7008-12
16229832 - Dev Biol. 2005 Nov 15;287(2):378-89
16688755 - J Neurobiol. 2006 Jun;66(7):606-30
17332020 - Bioinformatics. 2007 May 1;23(9):1061-7
25862140 - Mol Biol Evol. 2015 Aug;32(8):2085-96
9159930 - Mol Biol Evol. 1997 May;14(5):527-36
22254022 - Nutrients. 2010 Mar;2(3):299-316
19361615 - Am J Hum Genet. 2009 Apr;84(4):542-9
20010809 - Nature. 2010 Jan 21;463(7279):311-7
21252386 - Syst Biol. 2011 Mar;60(2):175-87
27634870 - Mol Biol Evol. 2016 Dec;33(12 ):3299-3307
26972590 - Nat Rev Genet. 2016 Apr;17(4):239-50
17118063 - J Anat. 2006 Dec;209(6):757-64
18791465 - J Cardiovasc Pharmacol. 2008 Oct;52(4):314-23
References_xml – volume-title: The Panda’s Thumb: More Reflections in Natural History
  year: 1980
  ident: e_1_3_4_14_2
– start-page: 433
  volume-title: The Terrestrial Eocene-Oligocene Transition in North America
  year: 1996
  ident: e_1_3_4_51_2
  doi: 10.1017/CBO9780511665431.022
– volume: 166
  start-page: 637
  year: 2004
  ident: e_1_3_4_30_2
  article-title: Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200405023
– volume: 22
  start-page: 2472
  year: 2005
  ident: e_1_3_4_53_2
  article-title: Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msi237
– volume-title: The Origin of Species
  year: 1859
  ident: e_1_3_4_39_2
– volume: 52
  start-page: 314
  year: 2008
  ident: e_1_3_4_36_2
  article-title: Soluble epoxide hydrolase inhibitors reduce the development of atherosclerosis in apolipoprotein e-knockout mouse model
  publication-title: J Cardiovasc Pharmacol
  doi: 10.1097/FJC.0b013e318185fa3c
– volume: 109
  start-page: 7008
  year: 2012
  ident: e_1_3_4_40_2
  article-title: Tempo of trophic evolution and its impact on mammalian diversification
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1117133109
– volume: 2
  start-page: 299
  year: 2010
  ident: e_1_3_4_35_2
  article-title: Vitamin B12 in health and disease
  publication-title: Nutrients
  doi: 10.3390/nu2030299
– volume-title: ModelGenerator: Amino Acid and Nucleotide Substitution Model Selection
  year: 2004
  ident: e_1_3_4_46_2
– volume: 60
  start-page: 175
  year: 2011
  ident: e_1_3_4_9_2
  article-title: Phylogenetic utility of nuclear introns in interfamilial relationships of Caniformia (order Carnivora)
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syq090
– volume: 21
  start-page: 5660
  year: 2012
  ident: e_1_3_4_8_2
  article-title: Black and white and read all over: The past, present and future of giant panda genetics
  publication-title: Mol Ecol
  doi: 10.1111/mec.12096
– volume: 334
  start-page: 521
  year: 2011
  ident: e_1_3_4_50_2
  article-title: Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification
  publication-title: Science
  doi: 10.1126/science.1211028
– volume: 23
  start-page: 1061
  year: 2007
  ident: e_1_3_4_16_2
  article-title: CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm071
– volume-title: Red Panda: Biology and Conservation of the First Panda
  year: 2011
  ident: e_1_3_4_33_2
– volume: 100
  start-page: 9440
  year: 2003
  ident: e_1_3_4_54_2
  article-title: Statistical significance for genomewide studies
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1530509100
– volume: 31
  start-page: 3210
  year: 2015
  ident: e_1_3_4_17_2
  article-title: BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv351
– volume: 444
  start-page: 288
  year: 2006
  ident: e_1_3_4_37_2
  article-title: The receptors and cells for mammalian taste
  publication-title: Nature
  doi: 10.1038/nature05401
– volume: 32
  start-page: 1232
  year: 2015
  ident: e_1_3_4_20_2
  article-title: Determining the null model for detecting adaptive convergence from genomic data: A case study using echolocating mammals
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msv013
– volume: 340
  start-page: 41
  year: 2010
  ident: e_1_3_4_27_2
  article-title: A mutation in the pericentrin gene causes abnormal interneuron migration to the olfactory bulb in mice
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2010.01.017
– volume: 287
  start-page: 378
  year: 2005
  ident: e_1_3_4_25_2
  article-title: Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2005.08.050
– volume: 209
  start-page: 757
  year: 2006
  ident: e_1_3_4_12_2
  article-title: Implications of the functional anatomy of the hand and forearm of Ailurus fulgens (Carnivora, Ailuridae) for the evolution of the ‘false-thumb’ in pandas
  publication-title: J Anat
  doi: 10.1111/j.1469-7580.2006.00649.x
– volume: 65
  start-page: 711
  year: 2016
  ident: e_1_3_4_24_2
  article-title: Gene tree discordance causes apparent substitution rate variation
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syw018
– volume: 26
  start-page: 400
  year: 2010
  ident: e_1_3_4_1_2
  article-title: Causes and evolutionary significance of genetic convergence
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2010.06.005
– volume: 17
  start-page: 239
  year: 2016
  ident: e_1_3_4_3_2
  article-title: Causes of molecular convergence and parallelism in protein evolution
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2016.11
– volume: 103
  start-page: 379
  year: 2006
  ident: e_1_3_4_15_2
  article-title: Evidence of a false thumb in a fossil carnivore clarifies the evolution of pandas
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0504899102
– volume: 24
  start-page: 1586
  year: 2007
  ident: e_1_3_4_23_2
  article-title: PAML 4: Phylogenetic analysis by maximum likelihood
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm088
– volume: 25
  start-page: 1972
  year: 2009
  ident: e_1_3_4_43_2
  article-title: trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp348
– volume: 56
  start-page: 49
  year: 2010
  ident: e_1_3_4_7_2
  article-title: Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2010.01.033
– volume: 124
  start-page: 113
  year: 1997
  ident: e_1_3_4_29_2
  article-title: Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development
  publication-title: Development
  doi: 10.1242/dev.124.1.113
– volume: 326
  start-page: 47
  year: 2002
  ident: e_1_3_4_34_2
  article-title: Vegetarian lifestyle and monitoring of vitamin B-12 status
  publication-title: Clin Chim Acta
  doi: 10.1016/S0009-8981(02)00307-8
– volume-title: The Giant Panda: A Morphological Study of Evolutionary Mechanisms
  year: 1964
  ident: e_1_3_4_13_2
– volume: 33
  start-page: 3299
  year: 2016
  ident: e_1_3_4_22_2
  article-title: Gene tree discordance can generate patterns of diminishing convergence over time
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msw197
– volume: 463
  start-page: 311
  year: 2010
  ident: e_1_3_4_18_2
  article-title: The sequence and de novo assembly of the giant panda genome
  publication-title: Nature
  doi: 10.1038/nature08696
– volume: 3
  start-page: 1
  year: 2005
  ident: e_1_3_4_49_2
  article-title: Phylogeny of the carnivora: Basal relationships among the carnivoramorphans, and assessment of the position of ‘miacoidea’ relative to carnivore
  publication-title: J Syst Palaeontol
  doi: 10.1017/S1477201904001518
– volume: 28
  start-page: 2197
  year: 2011
  ident: e_1_3_4_44_2
  article-title: Dynamic evolution of base composition: Causes and consequences in avian phylogenomics
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msr047
– volume: 383
  start-page: 295
  year: 2004
  ident: e_1_3_4_31_2
  article-title: Opposing actions of cellular retinol-binding protein and alcohol dehydrogenase control the balance between retinol storage and degradation
  publication-title: Biochem J
  doi: 10.1042/BJ20040621
– volume: 35
  start-page: W6
  year: 2007
  ident: e_1_3_4_52_2
  article-title: Web services at the European bioinformatics institute
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm291
– volume: 14
  start-page: 527
  year: 1997
  ident: e_1_3_4_19_2
  article-title: Detection of convergent and parallel evolution at the amino acid sequence level
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a025789
– volume: 47
  start-page: 272
  year: 2015
  ident: e_1_3_4_5_2
  article-title: Convergent evolution of the genomes of marine mammals
  publication-title: Nat Genet
  doi: 10.1038/ng.3198
– volume: 27
  start-page: 2669
  year: 2010
  ident: e_1_3_4_38_2
  article-title: Pseudogenization of the umami taste receptor gene Tas1r1 in the giant panda coincided with its dietary switch to bamboo
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msq153
– volume: 32
  start-page: 1792
  year: 2004
  ident: e_1_3_4_42_2
  article-title: MUSCLE: Multiple sequence alignment with high accuracy and high throughput
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh340
– volume: 397
  start-page: 309
  year: 1999
  ident: e_1_3_4_11_2
  article-title: Role of the giant panda’s ‘pseudo-thumb’
  publication-title: Nature
  doi: 10.1038/16830
– volume: 84
  start-page: 706
  year: 2009
  ident: e_1_3_4_28_2
  article-title: DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2009.04.016
– start-page: 542
  volume-title: Carnivore Behavior, Ecology, and Evolution
  year: 1996
  ident: e_1_3_4_48_2
– volume: 44
  start-page: 456
  year: 1994
  ident: e_1_3_4_41_2
  article-title: Are the pandas successful specialists or evolutionary failures?
  publication-title: Bioscience
  doi: 10.2307/1312297
– volume: 14
  start-page: 751
  year: 2013
  ident: e_1_3_4_2_2
  article-title: The genetic causes of convergent evolution
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3483
– volume-title: The Giant Pandas of Wolong
  year: 1985
  ident: e_1_3_4_10_2
– volume: 84
  start-page: 542
  year: 2009
  ident: e_1_3_4_26_2
  article-title: Ciliary abnormalities due to defects in the retrograde transport protein DYNC2H1 in short-rib polydactyly syndrome
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2009.03.015
– volume: 32
  start-page: 2085
  year: 2015
  ident: e_1_3_4_21_2
  article-title: Are convergent and parallel amino acid substitutions in protein evolution more prevalent than neutral expectations?
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msv091
– volume: 66
  start-page: 606
  year: 2006
  ident: e_1_3_4_32_2
  article-title: Overview of retinoid metabolism and function
  publication-title: J Neurobiol
  doi: 10.1002/neu.20242
– volume: 61
  start-page: 539
  year: 2012
  ident: e_1_3_4_47_2
  article-title: MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space
  publication-title: Syst Biol
  doi: 10.1093/sysbio/sys029
– volume: 345
  start-page: 1181
  year: 2014
  ident: e_1_3_4_4_2
  article-title: The coffee genome provides insight into the convergent evolution of caffeine biosynthesis
  publication-title: Science
  doi: 10.1126/science.1255274
– volume: 32
  start-page: 1237
  year: 2015
  ident: e_1_3_4_6_2
  article-title: No genome-wide protein sequence convergence for echolocation
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msv014
– volume: 32
  start-page: 1502
  year: 2016
  ident: e_1_3_4_55_2
  article-title: Multi-omics enrichment analysis using the GeneTrail2 web service
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv770
– volume: 346
  start-page: 1320
  year: 2014
  ident: e_1_3_4_45_2
  article-title: Whole-genome analyses resolve early branches in the tree of life of modern birds
  publication-title: Science
  doi: 10.1126/science.1253451
– reference: 23130639 - Mol Ecol. 2012 Dec;21(23):5660-74
– reference: 22509033 - Proc Natl Acad Sci U S A. 2012 May 1;109(18):7008-12
– reference: 15193143 - Biochem J. 2004 Oct 15;383(Pt 2):295-302
– reference: 19442771 - Am J Hum Genet. 2009 May;84(5):706-11
– reference: 20573776 - Mol Biol Evol. 2010 Dec;27(12):2669-73
– reference: 18791465 - J Cardiovasc Pharmacol. 2008 Oct;52(4):314-23
– reference: 22254022 - Nutrients. 2010 Mar;2(3):299-316
– reference: 22357727 - Syst Biol. 2012 May;61(3):539-42
– reference: 25631926 - Mol Biol Evol. 2015 May;32(5):1232-6
– reference: 16387860 - Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):379-82
– reference: 26787660 - Bioinformatics. 2016 May 15;32(10):1502-8
– reference: 21940861 - Science. 2011 Oct 28;334(6055):521-4
– reference: 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91
– reference: 20010809 - Nature. 2010 Jan 21;463(7279):311-7
– reference: 21393604 - Mol Biol Evol. 2011 Aug;28(8):2197-210
– reference: 20096683 - Dev Biol. 2010 Apr 1;340(1):41-53
– reference: 19505945 - Bioinformatics. 2009 Aug 1;25(15):1972-3
– reference: 27634870 - Mol Biol Evol. 2016 Dec;33(12 ):3299-3307
– reference: 12417096 - Clin Chim Acta. 2002 Dec;326(1-2):47-59
– reference: 17108952 - Nature. 2006 Nov 16;444(7117):288-94
– reference: 20138220 - Mol Phylogenet Evol. 2010 Jul;56(1):49-63
– reference: 26927960 - Syst Biol. 2016 Jul;65(4):711-21
– reference: 25621460 - Nat Genet. 2015 Mar;47(3):272-5
– reference: 25631925 - Mol Biol Evol. 2015 May;32(5):1237-41
– reference: 26059717 - Bioinformatics. 2015 Oct 1;31(19):3210-2
– reference: 20685006 - Trends Genet. 2010 Sep;26(9):400-5
– reference: 24105273 - Nat Rev Genet. 2013 Nov;14(11):751-64
– reference: 17576686 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W6-11
– reference: 21252386 - Syst Biol. 2011 Mar;60(2):175-87
– reference: 12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5
– reference: 17118063 - J Anat. 2006 Dec;209(6):757-64
– reference: 25862140 - Mol Biol Evol. 2015 Aug;32(8):2085-96
– reference: 16229832 - Dev Biol. 2005 Nov 15;287(2):378-89
– reference: 19361615 - Am J Hum Genet. 2009 Apr;84(4):542-9
– reference: 15337773 - J Cell Biol. 2004 Aug 30;166(5):637-43
– reference: 15034147 - Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
– reference: 16688755 - J Neurobiol. 2006 Jun;66(7):606-30
– reference: 17332020 - Bioinformatics. 2007 May 1;23(9):1061-7
– reference: 25504713 - Science. 2014 Dec 12;346(6215):1320-31
– reference: 9006072 - Development. 1997 Jan;124(1):113-23
– reference: 16107592 - Mol Biol Evol. 2005 Dec;22(12):2472-9
– reference: 9950422 - Nature. 1999 Jan 28;397(6717):309-10
– reference: 25190796 - Science. 2014 Sep 5;345(6201):1181-4
– reference: 26972590 - Nat Rev Genet. 2016 Apr;17(4):239-50
– reference: 9159930 - Mol Biol Evol. 1997 May;14(5):527-36
SSID ssj0009580
Score 2.5990436
Snippet Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The...
The giant panda and red panda are obligate bamboo-feeders that independently evolved from meat-eating ancestors and possess adaptive pseudothumbs, making them...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1081
SubjectTerms Adaptation, Physiological
Ailuridae - classification
Ailuridae - genetics
Ailuropoda melanoleuca
Ailurus fulgens
Amino acids
Animals
Bamboo
Bambusa - chemistry
Biological Evolution
Biological Sciences
Carnivora
Comparative analysis
Diet
Digestion - genetics
Evolution
Feeding Behavior
Genome
Genomics
Herbivory - genetics
Mammals - classification
Mammals - genetics
Pandas
Phenotype
Phylogeny
Pseudogenes
Receptors, G-Protein-Coupled - genetics
Sequence Alignment
Sequence Homology, Nucleic Acid
Species Specificity
Taste Buds
Toes - anatomy & histology
Toes - physiology
Ursidae - classification
Ursidae - genetics
Vitamins
Title Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas
URI https://www.jstor.org/stable/26479139
https://www.ncbi.nlm.nih.gov/pubmed/28096377
https://www.proquest.com/docview/1865502054
https://www.proquest.com/docview/1861564678
https://www.proquest.com/docview/1881767180
https://pubmed.ncbi.nlm.nih.gov/PMC5293045
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFbcAgMJCReBiqUpo4aZzHqQIqpFVF6qS-Fdtxt0prWtF2Qvxp_HXc2U7iVgXBXqIqcX409_X8nXv3HSHvJDZB4rMsnBW5CJNIFaHMmQrBHceJzpXMUiwUvhz2BlfJl0k6abV-eVlL243sqJ8H60ruY1XYB3bFKtn_sGx9UdgBn8G-sAULw_afbNz3pLtRbHWBksuoyYSayCafHEsrN2195x6jTstCuinFAih2iKSxvG5fA05ctjlw0BUuMKx95jqqZ7p1lVcwrBYSL5qyFOcr1u2wPRo2TY4HW-Pr53JZzwJmz9d5syRuFmJvtmJv1xge7MdcLP31iQgTWSvH7sl7H3wU3zHHMFkmtpy6o60vBioT9hLbTbR21rbk1KEy9Vxv1LW9X9w0jh2kDk4R4NOwr3Ep1h1guwz8lbumB5jVwiAm5hDgMddmZleVe3TZT4EpASF-QB7GEKJg94zPk8gTfOa2_Ml9sUpWKmMf9u6NetTuRjvkyObHHop89hN4PUY0PiaPXShDLywuT0hLl0_ISfXW6blTNH__lHzzgEoroFIHVNoAldZApQ6oFHBGd4BKDVAp4BMuUFAL1Gfk6tPHcX8QutYeoQLfsAmZVDovupKnUs-U4nnCEwksCuJlnRWa8YKLlKtEsBnLdJHmMkplKhlDtaKEx-yUHJXLUr8gVAEnLXIIIyTEBiLryhnDJpVCxTrPCxEFpFO906lyuvfYfuV2avIvMjZFe0wbewTkvD5hZSVf_jz01BipHgfhRYZCuwE5q6w2dQ4DzsMicAjPUjjvbX0Y3Dn-RydKvdyaMSjfBBTyb2N4lPWAVHYD8twCoXkAh6SAZDsQqQegnPzukXJ-Y2TlHZ5f3vvMV-RR4wDOyNHm-1a_Bsq-kW_Mb-M3a7fvNQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+genomics+reveals+convergent+evolution+between+the+bamboo-eating+giant+and+red+pandas&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hu%2C+Yibo&rft.au=Wu%2C+Qi&rft.au=Ma%2C+Shuai&rft.au=Ma%2C+Tianxiao&rft.date=2017-01-31&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=5&rft.spage=1081&rft.epage=1086&rft_id=info:doi/10.1073%2Fpnas.1613870114&rft_id=info%3Apmid%2F28096377&rft.externalDocID=PMC5293045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon