Granulation in high-load denitrifying upflow sludge bed (USB) pulsed reactors

In this work, the effect of the application of a pulse system to anoxic upflow sludge bed (USB) denitrifying reactors for enhancing sludge granulation was studied. In all, three 0.8 L reactors (two operated with flow pulsation, P1 with effluent recycling and P2 without recycling, and one without pul...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 40; no. 5; pp. 871 - 880
Main Authors Franco, A., Roca, E., Lema, J.M.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.03.2006
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, the effect of the application of a pulse system to anoxic upflow sludge bed (USB) denitrifying reactors for enhancing sludge granulation was studied. In all, three 0.8 L reactors (two operated with flow pulsation, P1 with effluent recycling and P2 without recycling, and one without pulsation and effluent recycling, no pulsation (NP)) were fed with a mixture of NaNO 3 and glucose and inoculated with methanogenic granular sludge. The organic loading rate (OLR) and the nitrogen loading rate (NLR) were progressively increased and, at the end of the experiment, extremely high values were obtained (67.5 kg COD/m 3 d and 11.25 kg N ‐ N O 3 - /m 3 d). Ammonia and nitrite accumulation in reactor NP were important in the maturation stage, decreasing the denitrification efficiency to 90%, while in reactor P1 only low nitrite values were obtained in the last few days of the experiment. In reactor P2, nitrogen removal was 100% most of the time. Several operational problems (flotation and the subsequent wash out of biomass) appeared in the NP reactor when working at high denitrifying loading rates, while in reactors P1 and P2 there were no notable problems, mainly due to the good characteristics of the sludge developed and the efficient degasification produced by the pulsing flow. The sludge formed in the NP reactor presented a flocculent structure and a total disintegration of the initial methanogenic granules occurred, while a small-sized granular biomass with a high specific density was developed in the pulsed reactors due to the shear stress produced.
Bibliography:http://dx.doi.org/10.1016/j.watres.2005.11.044
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2005.11.044