Review on Bioinspired Design of ECM-Mimicking Scaffolds by Computer-Aided Assembly of Cell-Free and Cell Laden Micro-Modules
Tissue engineering needs bioactive drug delivery scaffolds capable of guiding cell biosynthesis and tissue morphogenesis in three dimensions. Several strategies have been developed to design and fabricate ECM-mimicking scaffolds suitable for directing in vitro cell/scaffold interaction, and controll...
Saved in:
Published in | Journal of functional biomaterials Vol. 14; no. 2; p. 101 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.02.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Tissue engineering needs bioactive drug delivery scaffolds capable of guiding cell biosynthesis and tissue morphogenesis in three dimensions. Several strategies have been developed to design and fabricate ECM-mimicking scaffolds suitable for directing in vitro cell/scaffold interaction, and controlling tissue morphogenesis in vivo. Among these strategies, emerging computer aided design and manufacturing processes, such as modular tissue unit patterning, promise to provide unprecedented control over the generation of biologically and biomechanically competent tissue analogues. This review discusses recent studies and highlights the role of scaffold microstructural properties and their drug release capability in cell fate control and tissue morphogenesis. Furthermore, the work highlights recent advances in the bottom-up fabrication of porous scaffolds and hybrid constructs through the computer-aided assembly of cell-free and/or cell-laden micro-modules. The advantages, current limitations, and future challenges of these strategies are described and discussed. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 2079-4983 2079-4983 |
DOI: | 10.3390/jfb14020101 |