Cloning and Characterization of Soluble and Transmembrane Isoforms of a Novel Component of the Murine Type I Interferon Receptor, IFNAR 2

This report describes the cloning of cDNAs encoding transmembrane and soluble isoforms of a novel chain of the murine type I interferon (IFN) receptor and characterization of its capability to bind ligand and transduce signals. The transmembrane receptor (murine IFNAR 2c) has an extracellular domain...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 272; no. 38; pp. 23865 - 23870
Main Authors Owczarek, Catherine M., Hwang, Seung Y., Holland, Kerry A., Gulluyan, Lerna M., Tavaria, Michael, Weaver, Brian, Reich, Nancy C., Kola, Ismail, Hertzog, Paul J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 19.09.1997
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This report describes the cloning of cDNAs encoding transmembrane and soluble isoforms of a novel chain of the murine type I interferon (IFN) receptor and characterization of its capability to bind ligand and transduce signals. The transmembrane receptor (murine IFNAR 2c) has an extracellular domain of 215 amino acids and an intracellular domain of 250 amino acids, with 48% amino acid and 71% nucleotide identity with human IFNAR 2c. The cDNA for the soluble murine receptor (IFNAR 2a) encodes a 221-amino acid polypeptide identical to the first 210 amino acids of IFNAR 2c plus a novel 11 amino acids. Northern blot analyses show that murine IFNAR 2 is expressed as two transcripts of 4 kilobases encoding the transmembrane isoform and 1.5 kilobases encoding the more abundant soluble isoform. Studies using primary murine cells that lack IFNAR 1 show that IFNAR 2 is expressed, and cells bind type I IFN ligand, but do not transduce signals as detected by electrophoretic mobility shift assays of ISGF3 or GAF complexes binding to their cognate oligonucleotides. These cells show no effects on the ability of IFNγ to activate these complexes. These studies demonstrate that the IFNAR 2 transmembrane (2c) and soluble (2a) isoforms are conserved between the human and mouse and that IFNAR 2c has intrinsic ligand binding activity, but no intrinsic signal transducing activity as measured in this study.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.272.38.23865