Pathway-directed recyclable chirality inversion of coordinated supramolecular polymers

It remains challenging to elucidate the fundamental mechanisms behind the dynamic chirality inversion of supramolecular assemblies with pathway complexity. Herein, metal coordination driven assembly systems based on pyridyl-conjugated cholesterol (PVPCC) and metal ions (Ag + or Al 3+ ) are establish...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 9571 - 13
Main Authors Fu, Kuo, Zhao, Yanli, Liu, Guofeng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 06.11.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:It remains challenging to elucidate the fundamental mechanisms behind the dynamic chirality inversion of supramolecular assemblies with pathway complexity. Herein, metal coordination driven assembly systems based on pyridyl-conjugated cholesterol (PVPCC) and metal ions (Ag + or Al 3+ ) are established to demonstrate pathway-directed, recyclable chirality inversion and assembly polymorphism. In the Ag(I)/PVPCC system, a competitive pathway leads Ag-Complex to form either kinetically controlled supramolecular polymer (Ag-SP I) or thermodynamically favored Ag-SP II, accompanied by reversible chiroptical inversion. Conversely, the Al(III)/PVPCC system displays a solvent-assisted consecutive pathway: the Al-Complex initially forms ethanol-containing Al-SP II, and subsequently converts into ethanol-free Al-SP I with opposite chiroptical performance upon thermal treatment. Moreover, stable chirality inversion in the solid state enables potential dynamic circularly polarized luminescence encryption when Ag(I)/PVPCC is co-assembled with thioflavin T. These findings provide the guidance for the dynamic modulation of chirality functionality in supramolecular materials for applications in information processing, data encryption, and chiral spintronics. Elucidation of the fundamental mechanisms behind the dynamic chirality inversion of supramolecular assemblies with pathway complexity is challenging. Here, the authors report metal coordination driven assembly systems based on pyridyl-conjugated cholesterol and show that metal ions facilitate pathway-directed, recyclable chirality inversion and assembly polymorphism.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-53928-5