High-rate quantum LDPC codes for long-range-connected neutral atom registers
High-rate quantum error correcting (QEC) codes with moderate overheads in qubit number and control complexity are highly desirable for achieving fault-tolerant quantum computing. Recently, quantum error correction has experienced significant progress both in code development and experimental realiza...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 1111 - 9 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
28.01.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-025-56255-5 |
Cover
Summary: | High-rate quantum error correcting (QEC) codes with moderate overheads in qubit number and control complexity are highly desirable for achieving fault-tolerant quantum computing. Recently, quantum error correction has experienced significant progress both in code development and experimental realizations, with neutral atom qubit architecture rapidly establishing itself as a leading platform in the field. Scalable quantum computing will require processing with QEC codes that have low qubit overhead and large error suppression, and while such codes do exist, they involve a degree of non-locality that has yet to be integrated into experimental platforms. In this work, we analyze a family of high-rate Low-Density Parity-Check (LDPC) codes with limited long-range interactions and outline a near-term implementation in neutral atom registers. By means of circuit-level simulations, we find that these codes outperform surface codes in all respects when the two-qubit nearest neighbour gate error probability is below ~ 0.1%. By using multiple laser colors, we show how these codes can be natively integrated in two-dimensional static neutral atom qubit architectures with open boundaries, where the desired long-range connectivity can be targeted via the Rydberg blockade interaction.
Quantum error correction codes with low qubit overhead and error suppression capabilities are highly desirable for fault-tolerant quantum computing. Here, the authors introduce a family of high-rate Low Density Parity-Check quantum error correcting codes with moderate long-range connectivity and outline a near-term implementation in static neutral atom registers. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-025-56255-5 |