In vitro gastrointestinal gas monitoring with carbon nanotube sensors
In vitro simulators of the human gastrointestinal (GI) tract are remarkable technological platforms for studying the impact of food on the gut microbiota, enabling continuous and real-time monitoring of key biomarkers. However, comprehensive real-time monitoring of gaseous biomarkers in these system...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; p. 825 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.01.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In vitro simulators of the human gastrointestinal (GI) tract are remarkable technological platforms for studying the impact of food on the gut microbiota, enabling continuous and real-time monitoring of key biomarkers. However, comprehensive real-time monitoring of gaseous biomarkers in these systems is required with a cost-effective approach, which has been challenging to perform experimentally to date. In this work, we demonstrate the integration and in-line use of carbon nanotube (CNT)-based chemiresitive gas sensors coated with a thin polydimethylsiloxane (PDMS) membrane for the continuous monitoring of gases within the Simulator of the Human Microbial Ecosystem (SHIME). The findings demonstrate the ability of the gas sensor to continuously monitor the different phases of gas production in this harsh, anaerobic, highly humid, and acidic environment for a long exposure time (16 h) without saturation. This establishes our sensor platform as an effective tool for real-time monitoring of gaseous biomarkers in in vitro systems like SHIME. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-50134-z |