Phase transitions in the classical simulability of open quantum systems

We introduce a Langevin unravelling of the density matrix evolution of an open quantum system over matrix product states, which we term the time-dependent variational principle-Langevin equation. This allows the study of entanglement dynamics as a function of both temperature and coupling to the env...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; p. 8866
Main Authors Azad, F., Hallam, A., Morley, J., Green, A. G.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 31.05.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We introduce a Langevin unravelling of the density matrix evolution of an open quantum system over matrix product states, which we term the time-dependent variational principle-Langevin equation. This allows the study of entanglement dynamics as a function of both temperature and coupling to the environment. As the strength of coupling to and temperature of the environment is increased, we find a transition where the entanglement of the individual trajectories saturates, permitting a classical simulation of the system for all times. This is the Hamiltonian open system counterpart of the saturation in entanglement found in random circuits with projective or weak measurements. If a system is open, there is a limit to the advantage in simulating its behaviour on a quantum computer, even when that evolution harbours important quantum effects. Moreover, if a quantum simulator is in this phase, it cannot simulate with quantum advantage.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-35336-9