3D imaging of Sox2 enhancer clusters in embryonic stem cells

Combinatorial cis-regulatory networks encoded in animal genomes represent the foundational gene expression mechanism for directing cell-fate commitment and maintenance of cell identity by transcription factors (TFs). However, the 3D spatial organization of cis-elements and how such sub-nuclear struc...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 3; p. e04236
Main Authors Liu, Zhe, Legant, Wesley R, Chen, Bi-Chang, Li, Li, Grimm, Jonathan B, Lavis, Luke D, Betzig, Eric, Tjian, Robert
Format Journal Article
LanguageEnglish
Published England eLife Sciences Publications Ltd 24.12.2014
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Combinatorial cis-regulatory networks encoded in animal genomes represent the foundational gene expression mechanism for directing cell-fate commitment and maintenance of cell identity by transcription factors (TFs). However, the 3D spatial organization of cis-elements and how such sub-nuclear structures influence TF activity remain poorly understood. Here, we combine lattice light-sheet imaging, single-molecule tracking, numerical simulations, and ChIP-exo mapping to localize and functionally probe Sox2 enhancer-organization in living embryonic stem cells. Sox2 enhancers form 3D-clusters that are segregated from heterochromatin but overlap with a subset of Pol II enriched regions. Sox2 searches for specific binding targets via a 3D-diffusion dominant mode when shuttling long-distances between clusters while chromatin-bound states predominate within individual clusters. Thus, enhancer clustering may reduce global search efficiency but enables rapid local fine-tuning of TF search parameters. Our results suggest an integrated model linking cis-element 3D spatial distribution to local-versus-global target search modalities essential for regulating eukaryotic gene transcription.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2050-084X
2050-084X
DOI:10.7554/elife.04236