Numerical analysis of Phase change material and graphene-based tunable refractive index sensor for infrared frequency spectrum

Here, we present the findings of parametric analysis into a phase transition material Ge2Sb2Te5(GST)-based, graphene-based, with a wide dynamic range in the infrared and visible electromagnetic spectrum. The suggested structure is studied in multi-layered configurations, built up with layers of GST,...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; p. 7653
Main Authors Aliqab, Khaled, Dave, Kavan, Sorathiya, Vishal, Alsharari, Meshari, Armghan, Ammar
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.05.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Here, we present the findings of parametric analysis into a phase transition material Ge2Sb2Te5(GST)-based, graphene-based, with a wide dynamic range in the infrared and visible electromagnetic spectrum. The suggested structure is studied in multi-layered configurations, built up with layers of GST, graphene, silicon, and silver materials. These multilayer structures' reflectance behavior has been described for refractive indices between 1.3 and 2.5. The complete design is simulated using a computational process called the finite element method. Additionally, we have investigated the impact of material heights on the structure's performance in general. We have presented several resonating tracing curves in polynomial equations to determine the sensing behavior across a specific wavelength range and refractive index values. The proposed design is also investigated at various inclined angles of incidence to ascertain its wide-angle stability. A computational study of the proposed structure can assist in the evolution of biosensors to identify a wide range of biomolecules, including malignant, hemoglobin urine, saliva-cortisol, and glucose.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-34859-5