Ultrafast imaging of polariton propagation and interactions

Semiconductor excitations can hybridize with cavity photons to form exciton-polaritons (EPs) with remarkable properties, including light-like energy flow combined with matter-like interactions. To fully harness these properties, EPs must retain ballistic, coherent transport despite matter-mediated i...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; p. 3881
Main Authors Xu, Ding, Mandal, Arkajit, Baxter, James M., Cheng, Shan-Wen, Lee, Inki, Su, Haowen, Liu, Song, Reichman, David R., Delor, Milan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 30.06.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Semiconductor excitations can hybridize with cavity photons to form exciton-polaritons (EPs) with remarkable properties, including light-like energy flow combined with matter-like interactions. To fully harness these properties, EPs must retain ballistic, coherent transport despite matter-mediated interactions with lattice phonons. Here we develop a nonlinear momentum-resolved optical approach that directly images EPs in real space on femtosecond scales in a range of polaritonic architectures. We focus our analysis on EP propagation in layered halide perovskite microcavities. We reveal that EP–phonon interactions lead to a large renormalization of EP velocities at high excitonic fractions at room temperature. Despite these strong EP–phonon interactions, ballistic transport is maintained for up to half-exciton EPs, in agreement with quantum simulations of dynamic disorder shielding through light-matter hybridization. Above 50% excitonic character, rapid decoherence leads to diffusive transport. Our work provides a general framework to precisely balance EP coherence, velocity, and nonlinear interactions. Exciton-polaritons are part-light part-matter states in semiconductors. Here the authors leverage momentum-resolved optical microscopy to image ballistic and diffusive propagation of exciton-polaritons on femtosecond scales.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-39550-x