Re-convolving the compositional landscape of primary and recurrent glioblastoma reveals prognostic and targetable tissue states

Glioblastoma (GBM) diffusely infiltrates the brain and intermingles with non-neoplastic brain cells, including astrocytes, neurons and microglia/myeloid cells. This complex mixture of cell types forms the biological context for therapeutic response and tumor recurrence. We used single-nucleus RNA se...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; p. 2586
Main Authors Al-Dalahmah, Osama, Argenziano, Michael G., Kannan, Adithya, Mahajan, Aayushi, Furnari, Julia, Paryani, Fahad, Boyett, Deborah, Save, Akshay, Humala, Nelson, Khan, Fatima, Li, Juncheng, Lu, Hong, Sun, Yu, Tuddenham, John F., Goldberg, Alexander R., Dovas, Athanassios, Banu, Matei A., Sudhakar, Tejaswi, Bush, Erin, Lassman, Andrew B., McKhann, Guy M., Gill, Brian J. A., Youngerman, Brett, Sisti, Michael B., Bruce, Jeffrey N., Sims, Peter A., Menon, Vilas, Canoll, Peter
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.05.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Glioblastoma (GBM) diffusely infiltrates the brain and intermingles with non-neoplastic brain cells, including astrocytes, neurons and microglia/myeloid cells. This complex mixture of cell types forms the biological context for therapeutic response and tumor recurrence. We used single-nucleus RNA sequencing and spatial transcriptomics to determine the cellular composition and transcriptional states in primary and recurrent glioma and identified three compositional ‘tissue-states’ defined by cohabitation patterns between specific subpopulations of neoplastic and non-neoplastic brain cells. These tissue-states correlated with radiographic, histopathologic, and prognostic features and were enriched in distinct metabolic pathways. Fatty acid biosynthesis was enriched in the tissue-state defined by the cohabitation of astrocyte-like/mesenchymal glioma cells, reactive astrocytes, and macrophages, and was associated with recurrent GBM and shorter survival. Treating acute slices of GBM with a fatty acid synthesis inhibitor depleted the transcriptional signature of this pernicious tissue-state. These findings point to therapies that target interdependencies in the GBM microenvironment. Glioblastoma (GBM) cells can infiltrate into the tumour microenvironment (TME) and contribute to recurrence. Here, the authors analyse primary and recurrent GBMs and their TME using single-nucleus and spatial transcriptomics, revealing tissue states defined by the combinations of neoplastic and non-neoplastic cells, which could be therapeutic targets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-38186-1