Pulse potential mediated selectivity for the electrocatalytic oxidation of glycerol to glyceric acid

Preventing the deactivation of noble metal-based catalysts due to self-oxidation and poisonous adsorption is a significant challenge in organic electro-oxidation. In this study, we employ a pulsed potential electrolysis strategy for the selective electrocatalytic oxidation of glycerol to glyceric ac...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 2420 - 11
Main Authors Chen, Wei, Zhang, Liang, Xu, Leitao, He, Yuanqing, Pang, Huan, Wang, Shuangyin, Zou, Yuqin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.03.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Preventing the deactivation of noble metal-based catalysts due to self-oxidation and poisonous adsorption is a significant challenge in organic electro-oxidation. In this study, we employ a pulsed potential electrolysis strategy for the selective electrocatalytic oxidation of glycerol to glyceric acid over a Pt-based catalyst. In situ Fourier-transform infrared spectroscopy, quasi-in situ X-ray photoelectron spectroscopy, and finite element simulations reveal that the pulsed potential could tailor the catalyst’s oxidation and surface micro-environment. This prevents the overaccumulation of poisoning intermediate species and frees up active sites for the re-adsorption of OH adsorbate and glycerol. The pulsed potential electrolysis strategy results in a higher glyceric acid selectivity (81.8%) than constant-potential electrocatalysis with 0.7 V RHE (37.8%). This work offers an efficient strategy to mitigate the deactivation of noble metal-based electrocatalysts. Mitigating the deactivation of noble metal-based catalysts caused by self-oxidation and toxic adsorption poses a considerable challenge in organic electro-oxidation. This study addresses the issue by employing a pulsed potential electrolysis approach to selectively electrocatalyze the oxidation of glycerol to glyceric acid using a Pt-based catalyst.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-46752-4