Calculating gait kinematics using MR-based kinematic models
Rescaling generic models is the most frequently applied approach in generating biomechanical models for inverse kinematics. Nevertheless it is well known that this procedure introduces errors in calculated gait kinematics due to: (1) errors associated with palpation of anatomical landmarks, (2) inac...
Saved in:
Published in | Gait & posture Vol. 33; no. 2; pp. 158 - 164 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
01.02.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0966-6362 1879-2219 1879-2219 |
DOI | 10.1016/j.gaitpost.2010.11.003 |
Cover
Loading…
Abstract | Rescaling generic models is the most frequently applied approach in generating biomechanical models for inverse kinematics. Nevertheless it is well known that this procedure introduces errors in calculated gait kinematics due to: (1) errors associated with palpation of anatomical landmarks, (2) inaccuracies in the definition of joint coordinate systems. Based on magnetic resonance (MR) images, more accurate, subject-specific kinematic models can be built that are significantly less sensitive to both error types.
We studied the difference between the two modelling techniques by quantifying differences in calculated hip and knee joint kinematics during gait. In a clinically relevant patient group of 7 pediatric cerebral palsy (CP) subjects with increased femoral anteversion, gait kinematic were calculated using (1) rescaled generic kinematic models and (2) subject-specific MR-based models. In addition, both sets of kinematics were compared to those obtained using the standard clinical data processing workflow.
Inverse kinematics, calculated using rescaled generic models or the standard clinical workflow, differed largely compared to kinematics calculated using subject-specific MR-based kinematic models. The kinematic differences were most pronounced in the sagittal and transverse planes (hip and knee flexion, hip rotation). This study shows that MR-based kinematic models improve the reliability of gait kinematics, compared to generic models based on normal subjects. This is the case especially in CP subjects where bony deformations may alter the relative configuration of joint coordinate systems. Whilst high cost impedes the implementation of this modeling technique, our results demonstrate that efforts should be made to improve the level of subject-specific detail in the joint axes determination. |
---|---|
AbstractList | Rescaling generic models is the most frequently applied approach in generating biomechanical models for inverse kinematics. Nevertheless it is well known that this procedure introduces errors in calculated gait kinematics due to: (1) errors associated with palpation of anatomical landmarks, (2) inaccuracies in the definition of joint coordinate systems. Based on magnetic resonance (MR) images, more accurate, subject-specific kinematic models can be built that are significantly less sensitive to both error types. We studied the difference between the two modelling techniques by quantifying differences in calculated hip and knee joint kinematics during gait. In a clinically relevant patient group of 7 pediatric cerebral palsy (CP) subjects with increased femoral anteversion, gait kinematic were calculated using (1) rescaled generic kinematic models and (2) subject-specific MR-based models. In addition, both sets of kinematics were compared to those obtained using the standard clinical data processing workflow. Inverse kinematics, calculated using rescaled generic models or the standard clinical workflow, differed largely compared to kinematics calculated using subject-specific MR-based kinematic models. The kinematic differences were most pronounced in the sagittal and transverse planes (hip and knee flexion, hip rotation). This study shows that MR-based kinematic models improve the reliability of gait kinematics, compared to generic models based on normal subjects. This is the case especially in CP subjects where bony deformations may alter the relative configuration of joint coordinate systems. Whilst high cost impedes the implementation of this modeling technique, our results demonstrate that efforts should be made to improve the level of subject-specific detail in the joint axes determination.Rescaling generic models is the most frequently applied approach in generating biomechanical models for inverse kinematics. Nevertheless it is well known that this procedure introduces errors in calculated gait kinematics due to: (1) errors associated with palpation of anatomical landmarks, (2) inaccuracies in the definition of joint coordinate systems. Based on magnetic resonance (MR) images, more accurate, subject-specific kinematic models can be built that are significantly less sensitive to both error types. We studied the difference between the two modelling techniques by quantifying differences in calculated hip and knee joint kinematics during gait. In a clinically relevant patient group of 7 pediatric cerebral palsy (CP) subjects with increased femoral anteversion, gait kinematic were calculated using (1) rescaled generic kinematic models and (2) subject-specific MR-based models. In addition, both sets of kinematics were compared to those obtained using the standard clinical data processing workflow. Inverse kinematics, calculated using rescaled generic models or the standard clinical workflow, differed largely compared to kinematics calculated using subject-specific MR-based kinematic models. The kinematic differences were most pronounced in the sagittal and transverse planes (hip and knee flexion, hip rotation). This study shows that MR-based kinematic models improve the reliability of gait kinematics, compared to generic models based on normal subjects. This is the case especially in CP subjects where bony deformations may alter the relative configuration of joint coordinate systems. Whilst high cost impedes the implementation of this modeling technique, our results demonstrate that efforts should be made to improve the level of subject-specific detail in the joint axes determination. Rescaling generic models is the most frequently applied approach in generating biomechanical models for inverse kinematics. Nevertheless it is well known that this procedure introduces errors in calculated gait kinematics due to: (1) errors associated with palpation of anatomical landmarks, (2) inaccuracies in the definition of joint coordinate systems. Based on magnetic resonance (MR) images, more accurate, subject-specific kinematic models can be built that are significantly less sensitive to both error types. We studied the difference between the two modelling techniques by quantifying differences in calculated hip and knee joint kinematics during gait. In a clinically relevant patient group of 7 pediatric cerebral palsy (CP) subjects with increased femoral anteversion, gait kinematic were calculated using (1) rescaled generic kinematic models and (2) subject-specific MR-based models. In addition, both sets of kinematics were compared to those obtained using the standard clinical data processing workflow. Inverse kinematics, calculated using rescaled generic models or the standard clinical workflow, differed largely compared to kinematics calculated using subject-specific MR-based kinematic models. The kinematic differences were most pronounced in the sagittal and transverse planes (hip and knee flexion, hip rotation). This study shows that MR-based kinematic models improve the reliability of gait kinematics, compared to generic models based on normal subjects. This is the case especially in CP subjects where bony deformations may alter the relative configuration of joint coordinate systems. Whilst high cost impedes the implementation of this modeling technique, our results demonstrate that efforts should be made to improve the level of subject-specific detail in the joint axes determination. Abstract Rescaling generic models is the most frequently applied approach in generating biomechanical models for inverse kinematics. Nevertheless it is well known that this procedure introduces errors in calculated gait kinematics due to: (1) errors associated with palpation of anatomical landmarks, (2) inaccuracies in the definition of joint coordinate systems. Based on magnetic resonance (MR) images, more accurate, subject-specific kinematic models can be built that are significantly less sensitive to both error types. We studied the difference between the two modelling techniques by quantifying differences in calculated hip and knee joint kinematics during gait. In a clinically relevant patient group of 7 pediatric cerebral palsy (CP) subjects with increased femoral anteversion, gait kinematic were calculated using (1) rescaled generic kinematic models and (2) subject-specific MR-based models. In addition, both sets of kinematics were compared to those obtained using the standard clinical data processing workflow. Inverse kinematics, calculated using rescaled generic models or the standard clinical workflow, differed largely compared to kinematics calculated using subject-specific MR-based kinematic models. The kinematic differences were most pronounced in the sagittal and transverse planes (hip and knee flexion, hip rotation). This study shows that MR-based kinematic models improve the reliability of gait kinematics, compared to generic models based on normal subjects. This is the case especially in CP subjects where bony deformations may alter the relative configuration of joint coordinate systems. Whilst high cost impedes the implementation of this modeling technique, our results demonstrate that efforts should be made to improve the level of subject-specific detail in the joint axes determination. Rescaling generic models is the most frequently applied approach in generating biomechanical models for inverse kinematics. Nevertheless it is well known that this procedure introduces errors in calculated gait kinematics due to: (1) errors associated with palpation of anatomical landmarks, (2) inaccuracies in the definition of joint coordinate systems. Based on magnetic resonance (MR) images, more accurate, subject-specific kinematic models can be built that are significantly less sensitive to both error types. We studied the difference between the two modelling techniques by quantifying differences in calculated hip and knee joint kinematics during gait. In a clinically relevant patient group of 7 pediatric cerebral palsy (CP) subjects with increased femoral anteversion, gait kinematic were calculated using (1) rescaled generic kinematic models and (2) subject-specific MR-based models. In addition, both sets of kinematics were compared to those obtained using the standard clinical data processing workflow. Inverse kinematics, calculated using rescaled generic models or the standard clinical workflow, differed largely compared to kinematics calculated using subject-specific MR-based kinematic models. The kinematic differences were most pronounced in the sagittal and transverse planes (hip and knee flexion, hip rotation). This study shows that MR-based kinematic models improve the reliability of gait kinematics, compared to generic models based on normal subjects. This is the case especially in CP subjects where bony deformations may alter the relative configuration of joint coordinate systems. Whilst high cost impedes the implementation of this modeling technique, our results demonstrate that efforts should be made to improve the level of subject-specific detail in the joint axes determination. |
Author | Desloovere, Kaat Scheys, Lennart Suetens, Paul Jonkers, Ilse Spaepen, Arthur |
Author_xml | – sequence: 1 givenname: Lennart surname: Scheys fullname: Scheys, Lennart email: Lennart.scheys@uz.kuleuven.ac.be organization: Medical Image Computing (Radiology – ESAT/PSI), University Hospital Leuven Campus, Gasthuisberg, Herestraat 4, B-3000 Leuven, Belgium – sequence: 2 givenname: Kaat surname: Desloovere fullname: Desloovere, Kaat organization: Clinical Movement Laboratory, University Hospital Leuven Campus Pellenberg, Weligerveld 1, 3212 Lubbeek (Pellenberg), Belgium – sequence: 3 givenname: Arthur surname: Spaepen fullname: Spaepen, Arthur organization: Department of Kinesiology, FABER/K.U.Leuven, Tervuursevest 101, B-3000 Leuven, Belgium – sequence: 4 givenname: Paul surname: Suetens fullname: Suetens, Paul organization: Medical Image Computing (Radiology – ESAT/PSI), University Hospital Leuven Campus, Gasthuisberg, Herestraat 4, B-3000 Leuven, Belgium – sequence: 5 givenname: Ilse surname: Jonkers fullname: Jonkers, Ilse organization: Department of Kinesiology, FABER/K.U.Leuven, Tervuursevest 101, B-3000 Leuven, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21247765$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9r3DAQxUVJaDZpv0LYW0_eaiRZkmkpLUvaBlIK_XMWsjwbtJGtrWQX8u0js1kKOXRzEhq990bMb87JyRAHJOQS6AooyLfb1a314y7mccXoXIQVpfwFWYBWTcUYNCdkQRspK8klOyPnOW8ppYJr9pKcMWBCKVkvyLu1DW4KdvTD7XKOXN75Aftyd3k55bn67UfV2ozdv5dlHzsM-RU53diQ8fXjeUF-f776tf5a3Xz_cr3-dFO5WsBYoWAMO64bzQWKViu-EZYqqEECotCqc21TCy5bSZkDqVxnW6Y3TDXCMcb4BXmzz92l-GfCPJreZ4ch2AHjlE0xS6g5haNK3Uhda14_Q1lzxgQoWpSXj8qp7bEzu-R7m-7NYYZF8H4vcCnmnHBjnB_LmOIwJuuDAWpmZGZrDsjMjMwAmIKs2OUT-6HDUePHvbGgwL8ek8nO4-Cw8wndaLroj0d8eBLhgh-8s-EO7zFv45SGQtaAycxQ83NeqHmfoKwSb0D9P-A5P3gAuBTcZA |
CitedBy_id | crossref_primary_10_1080_10255842_2016_1171855 crossref_primary_10_1016_j_ptsp_2021_01_012 crossref_primary_10_1115_1_4040943 crossref_primary_10_1080_10255842_2013_873034 crossref_primary_10_1080_10255842_2015_1042464 crossref_primary_10_1007_s11517_015_1269_8 crossref_primary_10_3389_fnbot_2019_00054 crossref_primary_10_1016_j_medengphy_2012_10_004 crossref_primary_10_1371_journal_pone_0157010 crossref_primary_10_1371_journal_pone_0235966 crossref_primary_10_1016_j_jbiomech_2016_05_001 crossref_primary_10_1155_2019_8381351 crossref_primary_10_1016_j_jbiomech_2011_01_001 crossref_primary_10_1016_j_spinee_2020_02_004 crossref_primary_10_1080_10255842_2017_1390568 crossref_primary_10_1177_0954411917702931 crossref_primary_10_1016_j_jbiomech_2015_09_040 crossref_primary_10_1016_j_clinbiomech_2021_105402 crossref_primary_10_1016_j_jbiomech_2016_03_052 crossref_primary_10_3390_app12157918 crossref_primary_10_1016_j_clinbiomech_2015_02_005 crossref_primary_10_1007_s10439_020_02569_y crossref_primary_10_1016_j_jbiomech_2018_01_021 crossref_primary_10_1016_j_jbiomech_2018_03_039 crossref_primary_10_1007_s00371_014_0983_9 crossref_primary_10_1016_j_jbiomech_2020_109946 crossref_primary_10_1016_j_gaitpost_2015_04_018 crossref_primary_10_1016_j_gaitpost_2023_04_017 crossref_primary_10_1016_j_jbiomech_2022_111170 crossref_primary_10_1016_j_jbiomech_2011_08_022 crossref_primary_10_1016_j_gaitpost_2013_01_022 crossref_primary_10_1016_j_gaitpost_2022_11_019 crossref_primary_10_1142_S0218957716300015 crossref_primary_10_1007_s10439_015_1451_z crossref_primary_10_1016_j_gaitpost_2018_06_142 crossref_primary_10_1002_wsbm_1368 crossref_primary_10_1016_j_jbiomech_2017_01_030 crossref_primary_10_1115_1_4038741 crossref_primary_10_3389_fnhum_2020_00040 |
Cites_doi | 10.1016/j.jbiomech.2004.02.047 10.1007/BF02513282 10.1002/jor.1100080310 10.1016/S0167-9457(96)00055-3 10.1016/S0021-9290(00)00093-2 10.1007/s10439-009-9852-5 10.1016/S0021-9290(03)00087-3 10.1016/j.gaitpost.2004.04.004 10.1016/S0021-9290(01)00222-6 10.1016/0268-0033(95)00046-1 10.1016/0167-9457(91)90046-Z 10.1016/j.gaitpost.2007.04.009 10.1016/S0021-9290(00)00056-7 10.1016/j.gaitpost.2008.05.002 10.1016/j.gaitpost.2004.05.003 10.1016/j.gaitpost.2005.08.002 10.1016/j.jbiomech.2004.01.025 10.1055/s-2004-815676 10.1007/11790273_7 10.1097/MOP.0b013e3280118a6d 10.1016/j.acra.2005.08.006 10.3109/10929080009148877 10.1016/S0966-6362(99)00047-8 10.1016/j.gaitpost.2004.05.002 10.1016/S0021-9290(01)00052-5 10.1016/S0966-6362(00)00046-1 10.1055/s-2004-815673 10.1016/j.clinbiomech.2009.11.008 10.1007/s00221-001-0987-3 10.1109/34.121791 10.1016/S0021-9290(98)00158-4 10.1016/0021-9290(89)90179-6 |
ContentType | Journal Article |
Copyright | 2010 Elsevier B.V. Elsevier B.V. Copyright © 2010 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2010 Elsevier B.V. – notice: Elsevier B.V. – notice: Copyright © 2010 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TS |
DOI | 10.1016/j.gaitpost.2010.11.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Physical Education Index |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Physical Education Index |
DatabaseTitleList | MEDLINE - Academic MEDLINE Physical Education Index |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1879-2219 |
EndPage | 164 |
ExternalDocumentID | 21247765 10_1016_j_gaitpost_2010_11_003 S0966636210003917 1_s2_0_S0966636210003917 |
Genre | Journal Article Comparative Study |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29H 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W KOM M29 M31 M41 MO0 N9A O-L O9- OAUVE OF0 OR. OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K UPT UV1 WH7 WUQ YRY Z5R ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG YCJ AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 7TS |
ID | FETCH-LOGICAL-c541t-e422ed389834e4b873f4a0715161ee487dcb95436b602c167cdab28f2794c2223 |
IEDL.DBID | .~1 |
ISSN | 0966-6362 1879-2219 |
IngestDate | Fri Jul 11 03:36:00 EDT 2025 Fri Jul 11 06:27:42 EDT 2025 Tue Aug 05 11:13:00 EDT 2025 Mon Jul 21 05:51:49 EDT 2025 Tue Jul 01 04:22:19 EDT 2025 Thu Apr 24 23:10:38 EDT 2025 Fri Feb 23 02:33:11 EST 2024 Sun Feb 23 10:18:54 EST 2025 Tue Aug 26 18:56:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Cerebral palsy Magnetic resonance imaging Gait Subject-specific kinematic models Inverse kinematics |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2010 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-e422ed389834e4b873f4a0715161ee487dcb95436b602c167cdab28f2794c2223 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 21247765 |
PQID | 853224170 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_954615301 proquest_miscellaneous_896858351 proquest_miscellaneous_853224170 pubmed_primary_21247765 crossref_citationtrail_10_1016_j_gaitpost_2010_11_003 crossref_primary_10_1016_j_gaitpost_2010_11_003 elsevier_sciencedirect_doi_10_1016_j_gaitpost_2010_11_003 elsevier_clinicalkeyesjournals_1_s2_0_S0966636210003917 elsevier_clinicalkey_doi_10_1016_j_gaitpost_2010_11_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-01 |
PublicationDateYYYYMMDD | 2011-02-01 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Gait & posture |
PublicationTitleAlternate | Gait Posture |
PublicationYear | 2011 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Schache, Baker, Lamoreux (bib0075) 2006; 24 Scheys, Jonkers, Loeckx, Maes, Spaepen, Suetens (bib0100) 2006; 4072 Besier, Sturnieks, Alderson, Lloyd (bib0055) 2003; 36 Wu, Siegler, Allard, Kirtley, Leardini, Rosenbaum (bib0175) 2002; 35 Stagni, Leardini, Cappozzo, Benedetti, Cappello (bib0060) 2000; 33 Scheys, Van Campenhout, Spaepen, Suetens, Jonkers (bib0105) 2008; 28 Schutte, Narayanan, Stout, Selber, Gage, Schwartz (bib0025) 2000; 11 Arnold, Salinas, Asakawa, Delp (bib0170) 2000; 5 Davis, Ounpuu, Tyburski, Gage (bib0110) 1991; 10 Piazza, Cavanagh (bib0085) 2000; 33 Chiari, Della Croce, Leardini, Cappozzo (bib0040) 2005; 21 Narayanan (bib0010) 2007; 9 Gage (bib0005) 2009 Piazza, Okita, Cavanagh (bib0070) 2001; 34 Lopomo, Sun, Zaffagnini, Giordano, Safran (bib0065) 2009; 25 Verschueren, Swinnen, Desloovere, Duysens (bib0115) 2002; 143 Arnold, Asakawa, Delp (bib0125) 2000; 11 Lu, O’Connor (bib0090) 1999; 32 Kadaba, Ramakrishnan, Wootten (bib0020) 1990; 8 Cohen (bib0140) 1988 Della Croce, Leardini, Chiari, Cappozzo (bib0030) 2005; 21 Shellock (bib0155) 2003; 7 Gilles, Perrin, Magnenat-Thalmann, Vallee (bib0165) 2005; 12 Simon (bib0015) 2004; 37 Besl, McKay (bib0135) 1992; 14 Cappozzo, Catani, Leardini, Benedetti, Della Croce (bib0035) 1996; 11 Yamaguchi, Zajac (bib0150) 1989; 22 Leardini, Chiari, Della Croce, Cappozzo (bib0045) 2005; 21 Cappello, Cappozzo, La Palombara, Lucchetti, Leardini (bib0050) 1997; 16 Arnold, Ward, Lieber, Delp (bib0130) 2010; 38 Della Croce, Cappozzo, Kerrigan (bib0145) 1999; 37 Asakawa, Pappas, Blemker, Drace, Delp (bib0160) 2003; 7 Most, Axe, Rubash, Li (bib0080) 2004; 37 Donati, Camomilla, Vannozzi, Cappozzo (bib0095) 2007; 26 Delp, Loan, Hoy, Zajac, Topp, Rosen (bib0120) 1990; 37 Davis (10.1016/j.gaitpost.2010.11.003_bib0110) 1991; 10 Schutte (10.1016/j.gaitpost.2010.11.003_bib0025) 2000; 11 Wu (10.1016/j.gaitpost.2010.11.003_bib0175) 2002; 35 Donati (10.1016/j.gaitpost.2010.11.003_bib0095) 2007; 26 Delp (10.1016/j.gaitpost.2010.11.003_bib0120) 1990; 37 Schache (10.1016/j.gaitpost.2010.11.003_bib0075) 2006; 24 Shellock (10.1016/j.gaitpost.2010.11.003_bib0155) 2003; 7 Stagni (10.1016/j.gaitpost.2010.11.003_bib0060) 2000; 33 Della Croce (10.1016/j.gaitpost.2010.11.003_bib0030) 2005; 21 Piazza (10.1016/j.gaitpost.2010.11.003_bib0070) 2001; 34 Narayanan (10.1016/j.gaitpost.2010.11.003_bib0010) 2007; 9 Leardini (10.1016/j.gaitpost.2010.11.003_bib0045) 2005; 21 Cappello (10.1016/j.gaitpost.2010.11.003_bib0050) 1997; 16 Scheys (10.1016/j.gaitpost.2010.11.003_bib0100) 2006; 4072 Scheys (10.1016/j.gaitpost.2010.11.003_bib0105) 2008; 28 Arnold (10.1016/j.gaitpost.2010.11.003_bib0125) 2000; 11 Della Croce (10.1016/j.gaitpost.2010.11.003_bib0145) 1999; 37 Cappozzo (10.1016/j.gaitpost.2010.11.003_bib0035) 1996; 11 Gilles (10.1016/j.gaitpost.2010.11.003_bib0165) 2005; 12 Lopomo (10.1016/j.gaitpost.2010.11.003_bib0065) 2009; 25 Yamaguchi (10.1016/j.gaitpost.2010.11.003_bib0150) 1989; 22 Arnold (10.1016/j.gaitpost.2010.11.003_bib0170) 2000; 5 Chiari (10.1016/j.gaitpost.2010.11.003_bib0040) 2005; 21 Besier (10.1016/j.gaitpost.2010.11.003_bib0055) 2003; 36 Lu (10.1016/j.gaitpost.2010.11.003_bib0090) 1999; 32 Asakawa (10.1016/j.gaitpost.2010.11.003_bib0160) 2003; 7 Piazza (10.1016/j.gaitpost.2010.11.003_bib0085) 2000; 33 Arnold (10.1016/j.gaitpost.2010.11.003_bib0130) 2010; 38 Besl (10.1016/j.gaitpost.2010.11.003_bib0135) 1992; 14 Cohen (10.1016/j.gaitpost.2010.11.003_bib0140) 1988 Most (10.1016/j.gaitpost.2010.11.003_bib0080) 2004; 37 Verschueren (10.1016/j.gaitpost.2010.11.003_bib0115) 2002; 143 Simon (10.1016/j.gaitpost.2010.11.003_bib0015) 2004; 37 Kadaba (10.1016/j.gaitpost.2010.11.003_bib0020) 1990; 8 Gage (10.1016/j.gaitpost.2010.11.003_bib0005) 2009 |
References_xml | – volume: 25 start-page: 206 year: 2009 end-page: 212 ident: bib0065 article-title: Evaluation of formal methods in hip joint center assessment: an in vitro analysis publication-title: Clinical Biomechanics – volume: 26 start-page: 179 year: 2007 end-page: 185 ident: bib0095 article-title: Enhanced anatomical calibration in human movement analysis publication-title: Gait & Posture – volume: 5 start-page: 108 year: 2000 end-page: 119 ident: bib0170 article-title: Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity publication-title: Computer Aided Surgery – volume: 22 start-page: 1 year: 1989 end-page: 10 ident: bib0150 article-title: A planar model of the knee joint to characterize the knee extensor mechanism publication-title: Journal of Biomechanics – volume: 8 start-page: 383 year: 1990 end-page: 392 ident: bib0020 article-title: Measurement of lower extremity kinematics during level walking publication-title: Journal of Orthopaedic Research – volume: 21 start-page: 197 year: 2005 end-page: 211 ident: bib0040 article-title: Human movement analysis using stereophotogrammetry: part 2: instrumental errors publication-title: Gait & Posture – year: 1988 ident: bib0140 article-title: Statistical power analysis for the behavioral sciences – volume: 12 start-page: 1285 year: 2005 end-page: 1292 ident: bib0165 article-title: Bone motion analysis from dynamic MRI: acquisition and tracking publication-title: Academic Radiology – volume: 7 start-page: 249 year: 2003 end-page: 276 ident: bib0155 article-title: Functional assessment of the joints using kinematic magnetic resonance imaging publication-title: Seminars in Musculoskeletal Radiology – volume: 21 start-page: 226 year: 2005 end-page: 237 ident: bib0030 article-title: Human movement analysis using stereophotogrammetry. Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics publication-title: Gait & Posture – volume: 37 start-page: 757 year: 1990 end-page: 767 ident: bib0120 article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures publication-title: IEEE Transactions on Medical Imaging – volume: 10 start-page: 575 year: 1991 end-page: 587 ident: bib0110 article-title: A gait analysis data collection and reduction technique publication-title: Human Movement Science – volume: 35 start-page: 543 year: 2002 end-page: 548 ident: bib0175 article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part 1: ankle, hip, and spine publication-title: Journal of Biomechanics – volume: 9 start-page: 38 year: 2007 end-page: 43 ident: bib0010 article-title: The role of gait analysis in the orthopaedic management of ambulatory cerebral palsy publication-title: Current Opinion in Pediatrics – volume: 11 start-page: 25 year: 2000 end-page: 31 ident: bib0025 article-title: An index for quantifying deviations from normal gait publication-title: Gait Posture – year: 2009 ident: bib0005 article-title: The treatment of gait problems in cerebral palsy – volume: 4072 start-page: 58 year: 2006 end-page: 66 ident: bib0100 article-title: Image based musculoskeletal modeling allows personalized biomechanical analysis of gait publication-title: Lecture Notes in Computer Science – volume: 33 start-page: 1029 year: 2000 end-page: 1034 ident: bib0085 article-title: Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment publication-title: Journal of Biomechanics – volume: 38 start-page: 269 year: 2010 end-page: 279 ident: bib0130 article-title: A musculoskeletal model for predicting moment generation capacity of human lower limb muscles publication-title: Annals of Biomedical Engineering – volume: 37 start-page: 1743 year: 2004 end-page: 1748 ident: bib0080 article-title: Sensitivity of the knee joint kinematics calculation to selection of flexion axes publication-title: Journal of Biomechanics – volume: 11 start-page: 181 year: 2000 end-page: 190 ident: bib0125 article-title: Do the hamstrings and adductors contribute to excessive internal rotation of the hip in persons with cerebral palsy? publication-title: Gait & Posture – volume: 21 start-page: 212 year: 2005 end-page: 225 ident: bib0045 article-title: Human movement analysis using stereophotogrammetry: part 3. Soft tissue artifact assessment and compensation publication-title: Gait & Posture – volume: 24 start-page: 100 year: 2006 end-page: 109 ident: bib0075 article-title: Defining the knee joint flexion–extension axis for purposes of quantitative gait analysis: an evaluation of methods publication-title: Gait & Posture – volume: 32 start-page: 129 year: 1999 end-page: 134 ident: bib0090 article-title: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints publication-title: Journal of Biomechanics – volume: 16 start-page: 259 year: 1997 end-page: 274 ident: bib0050 article-title: Multiple anatomical landmark calibration for optimal bone pose estimation publication-title: Human Movement Science – volume: 33 start-page: 1479 year: 2000 end-page: 1487 ident: bib0060 article-title: Effects of hip joint centre mislocation on gait analysis results publication-title: Journal of Biomechanics – volume: 11 start-page: 90 year: 1996 end-page: 100 ident: bib0035 article-title: Position and orientation in space of bones during movement, experimental artefacts publication-title: Clinical Biomechanics – volume: 34 start-page: 967 year: 2001 end-page: 973 ident: bib0070 article-title: Accuracy of the functional method of hip joint center location: effects of limited motion and varied implementation publication-title: Journal of Biomechanics – volume: 14 start-page: 239 year: 1992 end-page: 256 ident: bib0135 article-title: A method for registration of 3-d shapes publication-title: IEEE Pattern Analysis and Machine Intelligence – volume: 37 start-page: 155 year: 1999 end-page: 161 ident: bib0145 article-title: Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles publication-title: Medical and Biological Engineering and Computing – volume: 7 start-page: 287 year: 2003 end-page: 295 ident: bib0160 article-title: Cinephase-contrast magnetic resonance imaging as a tool for quantification of skeletal muscle motion publication-title: Seminars in Musculoskeletal Radiology – volume: 28 start-page: 358 year: 2008 end-page: 365 ident: bib0105 article-title: Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths publication-title: Gait & Posture – volume: 143 start-page: 231 year: 2002 end-page: 239 ident: bib0115 article-title: Effects of tendon vibration on the spatiotemporal characteristics of human locomotion publication-title: Experimental Brain Research – volume: 37 start-page: 1869 year: 2004 end-page: 1880 ident: bib0015 article-title: Quantification of human motion: gait analysis—benefits and limitations to its application to clinical problems publication-title: Journal of Biomechanics – volume: 36 start-page: 1159 year: 2003 end-page: 1168 ident: bib0055 article-title: Repeatability of gait data using a functional hip joint centre and a mean helical knee axis publication-title: Journal of Biomechanics – volume: 37 start-page: 1869 year: 2004 ident: 10.1016/j.gaitpost.2010.11.003_bib0015 article-title: Quantification of human motion: gait analysis—benefits and limitations to its application to clinical problems publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2004.02.047 – volume: 37 start-page: 155 issue: 2 year: 1999 ident: 10.1016/j.gaitpost.2010.11.003_bib0145 article-title: Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles publication-title: Medical and Biological Engineering and Computing doi: 10.1007/BF02513282 – year: 1988 ident: 10.1016/j.gaitpost.2010.11.003_bib0140 – volume: 8 start-page: 383 year: 1990 ident: 10.1016/j.gaitpost.2010.11.003_bib0020 article-title: Measurement of lower extremity kinematics during level walking publication-title: Journal of Orthopaedic Research doi: 10.1002/jor.1100080310 – volume: 16 start-page: 259 issue: 2–3 year: 1997 ident: 10.1016/j.gaitpost.2010.11.003_bib0050 article-title: Multiple anatomical landmark calibration for optimal bone pose estimation publication-title: Human Movement Science doi: 10.1016/S0167-9457(96)00055-3 – volume: 33 start-page: 1479 issue: 11 year: 2000 ident: 10.1016/j.gaitpost.2010.11.003_bib0060 article-title: Effects of hip joint centre mislocation on gait analysis results publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(00)00093-2 – volume: 38 start-page: 269 issue: 2 year: 2010 ident: 10.1016/j.gaitpost.2010.11.003_bib0130 article-title: A musculoskeletal model for predicting moment generation capacity of human lower limb muscles publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-009-9852-5 – volume: 36 start-page: 1159 issue: 8 year: 2003 ident: 10.1016/j.gaitpost.2010.11.003_bib0055 article-title: Repeatability of gait data using a functional hip joint centre and a mean helical knee axis publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(03)00087-3 – volume: 21 start-page: 197 issue: 2 year: 2005 ident: 10.1016/j.gaitpost.2010.11.003_bib0040 article-title: Human movement analysis using stereophotogrammetry: part 2: instrumental errors publication-title: Gait & Posture doi: 10.1016/j.gaitpost.2004.04.004 – volume: 35 start-page: 543 year: 2002 ident: 10.1016/j.gaitpost.2010.11.003_bib0175 article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part 1: ankle, hip, and spine publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(01)00222-6 – volume: 11 start-page: 90 issue: 2 year: 1996 ident: 10.1016/j.gaitpost.2010.11.003_bib0035 article-title: Position and orientation in space of bones during movement, experimental artefacts publication-title: Clinical Biomechanics doi: 10.1016/0268-0033(95)00046-1 – volume: 10 start-page: 575 issue: 5 year: 1991 ident: 10.1016/j.gaitpost.2010.11.003_bib0110 article-title: A gait analysis data collection and reduction technique publication-title: Human Movement Science doi: 10.1016/0167-9457(91)90046-Z – volume: 26 start-page: 179 issue: 2 year: 2007 ident: 10.1016/j.gaitpost.2010.11.003_bib0095 article-title: Enhanced anatomical calibration in human movement analysis publication-title: Gait & Posture doi: 10.1016/j.gaitpost.2007.04.009 – year: 2009 ident: 10.1016/j.gaitpost.2010.11.003_bib0005 – volume: 33 start-page: 1029 issue: 8 year: 2000 ident: 10.1016/j.gaitpost.2010.11.003_bib0085 article-title: Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(00)00056-7 – volume: 28 start-page: 358 issue: 3 year: 2008 ident: 10.1016/j.gaitpost.2010.11.003_bib0105 article-title: Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths publication-title: Gait & Posture doi: 10.1016/j.gaitpost.2008.05.002 – volume: 21 start-page: 226 issue: 2 year: 2005 ident: 10.1016/j.gaitpost.2010.11.003_bib0030 article-title: Human movement analysis using stereophotogrammetry. Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics publication-title: Gait & Posture doi: 10.1016/j.gaitpost.2004.05.003 – volume: 24 start-page: 100 issue: 1 year: 2006 ident: 10.1016/j.gaitpost.2010.11.003_bib0075 article-title: Defining the knee joint flexion–extension axis for purposes of quantitative gait analysis: an evaluation of methods publication-title: Gait & Posture doi: 10.1016/j.gaitpost.2005.08.002 – volume: 37 start-page: 1743 issue: 11 year: 2004 ident: 10.1016/j.gaitpost.2010.11.003_bib0080 article-title: Sensitivity of the knee joint kinematics calculation to selection of flexion axes publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2004.01.025 – volume: 7 start-page: 287 issue: 4 year: 2003 ident: 10.1016/j.gaitpost.2010.11.003_bib0160 article-title: Cinephase-contrast magnetic resonance imaging as a tool for quantification of skeletal muscle motion publication-title: Seminars in Musculoskeletal Radiology doi: 10.1055/s-2004-815676 – volume: 4072 start-page: 58 year: 2006 ident: 10.1016/j.gaitpost.2010.11.003_bib0100 article-title: Image based musculoskeletal modeling allows personalized biomechanical analysis of gait publication-title: Lecture Notes in Computer Science doi: 10.1007/11790273_7 – volume: 9 start-page: 38 year: 2007 ident: 10.1016/j.gaitpost.2010.11.003_bib0010 article-title: The role of gait analysis in the orthopaedic management of ambulatory cerebral palsy publication-title: Current Opinion in Pediatrics doi: 10.1097/MOP.0b013e3280118a6d – volume: 12 start-page: 1285 issue: 10 year: 2005 ident: 10.1016/j.gaitpost.2010.11.003_bib0165 article-title: Bone motion analysis from dynamic MRI: acquisition and tracking publication-title: Academic Radiology doi: 10.1016/j.acra.2005.08.006 – volume: 5 start-page: 108 year: 2000 ident: 10.1016/j.gaitpost.2010.11.003_bib0170 article-title: Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity publication-title: Computer Aided Surgery doi: 10.3109/10929080009148877 – volume: 11 start-page: 25 issue: 1 year: 2000 ident: 10.1016/j.gaitpost.2010.11.003_bib0025 article-title: An index for quantifying deviations from normal gait publication-title: Gait Posture doi: 10.1016/S0966-6362(99)00047-8 – volume: 21 start-page: 212 issue: 2 year: 2005 ident: 10.1016/j.gaitpost.2010.11.003_bib0045 article-title: Human movement analysis using stereophotogrammetry: part 3. Soft tissue artifact assessment and compensation publication-title: Gait & Posture doi: 10.1016/j.gaitpost.2004.05.002 – volume: 34 start-page: 967 issue: 7 year: 2001 ident: 10.1016/j.gaitpost.2010.11.003_bib0070 article-title: Accuracy of the functional method of hip joint center location: effects of limited motion and varied implementation publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(01)00052-5 – volume: 11 start-page: 181 issue: 3 year: 2000 ident: 10.1016/j.gaitpost.2010.11.003_bib0125 article-title: Do the hamstrings and adductors contribute to excessive internal rotation of the hip in persons with cerebral palsy? publication-title: Gait & Posture doi: 10.1016/S0966-6362(00)00046-1 – volume: 7 start-page: 249 issue: 4 year: 2003 ident: 10.1016/j.gaitpost.2010.11.003_bib0155 article-title: Functional assessment of the joints using kinematic magnetic resonance imaging publication-title: Seminars in Musculoskeletal Radiology doi: 10.1055/s-2004-815673 – volume: 25 start-page: 206 issue: 3 year: 2009 ident: 10.1016/j.gaitpost.2010.11.003_bib0065 article-title: Evaluation of formal methods in hip joint center assessment: an in vitro analysis publication-title: Clinical Biomechanics doi: 10.1016/j.clinbiomech.2009.11.008 – volume: 143 start-page: 231 issue: 2 year: 2002 ident: 10.1016/j.gaitpost.2010.11.003_bib0115 article-title: Effects of tendon vibration on the spatiotemporal characteristics of human locomotion publication-title: Experimental Brain Research doi: 10.1007/s00221-001-0987-3 – volume: 37 start-page: 757 issue: 8 year: 1990 ident: 10.1016/j.gaitpost.2010.11.003_bib0120 article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures publication-title: IEEE Transactions on Medical Imaging – volume: 14 start-page: 239 issue: 2 year: 1992 ident: 10.1016/j.gaitpost.2010.11.003_bib0135 article-title: A method for registration of 3-d shapes publication-title: IEEE Pattern Analysis and Machine Intelligence doi: 10.1109/34.121791 – volume: 32 start-page: 129 issue: 2 year: 1999 ident: 10.1016/j.gaitpost.2010.11.003_bib0090 article-title: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(98)00158-4 – volume: 22 start-page: 1 year: 1989 ident: 10.1016/j.gaitpost.2010.11.003_bib0150 article-title: A planar model of the knee joint to characterize the knee extensor mechanism publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(89)90179-6 |
SSID | ssj0004382 |
Score | 2.165849 |
Snippet | Rescaling generic models is the most frequently applied approach in generating biomechanical models for inverse kinematics. Nevertheless it is well known that... Abstract Rescaling generic models is the most frequently applied approach in generating biomechanical models for inverse kinematics. Nevertheless it is well... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 158 |
SubjectTerms | Biomechanical Phenomena Cerebral palsy Cerebral Palsy - physiopathology Child Female Gait Gait - physiology Hip Joint - physiology Humans Inverse kinematics Knee Joint - physiology Magnetic Resonance Imaging Male Models, Biological Orthopedics Subject-specific kinematic models |
Title | Calculating gait kinematics using MR-based kinematic models |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0966636210003917 https://www.clinicalkey.es/playcontent/1-s2.0-S0966636210003917 https://dx.doi.org/10.1016/j.gaitpost.2010.11.003 https://www.ncbi.nlm.nih.gov/pubmed/21247765 https://www.proquest.com/docview/853224170 https://www.proquest.com/docview/896858351 https://www.proquest.com/docview/954615301 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhhdBLaZM-to-gQ8hNWUuWJS89LUvD9rEhpAnkJiRZXjZNvUvtHHrpb--MbG9aQpqSnAzyDBbjmdEnaR6E7DmlpU94yVQpUiaFtMwKa1muCp5Y7nwZowlnR2p6Jj-dZ-cbZNLnwmBYZef7W58evXU3MuykOVwtFsOvAL5huVSCxwRTjhnlUmrU8oNf12EeeNEV6-0pxZD6jyzhi4O5XTSrZd20IV5YzbNvnnVzgboNgMaF6PApedIhSDpuJ_mMbIRqm-yMK9g9f_9J92mM6YyH5dtka9Zdne-Q9xN76WOvrmpOcUb0G4zHgq01xej3OZ2dMFzUius3NDbKqZ-Ts8MPp5Mp6zonMJ9J3rAghQgFYJE8lUG6XKeltAAmMsB3IcAepfBulMlUOZUIz5X2hXUiLwVYp0fE8IJsVssqvCKU50XutIMxCWAj1SPYg1gpfZk5nyepHJCsF5fxXVlx7G5xafr4sQvTi9mgmGHPgQVJB2S45lu1hTXu5ND93zB92ig4OgO-_36coe7stTbc1MIk5oZODchozfmXWv7XV2mvMgZsFi9ibBWWV7UBiITISSf_IBlhY4A047eTwA9EtJ4AyctWIdeCBDwitVbZ6wdM_w153J6fY-jOW7LZ_LgK7wCANW43WtgueTSenHw5xufHz9Oj35eTL2o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH8anQRcEGwwyjbwAXEzjR0nTsSpqpg6tvYAm7SbZTtO1THSimQH_nuenaQDTWMIro6fYr28j9-L3wfAW5NKYSNW0rTkMRVcaKq51jRLCxZpZmwZsgln83R6Lj5dJBdbMOlrYXxaZWf7W5serHW3Muq4OVovl6MvCL7RXaachQJTJh_Atu9OlQxge3x8Mp3flEfGYWaU3089wS-FwpfvF3rZrFd102Z5-Yae_fys2z7qLgwafNHRU3jSgUgybs_5DLZctQO74woD6G8_yDsS0jrD__IdeDjrbs934cNEX9kwrqtaEH8i8hXXQ8_WmvgE-AWZfaberxU3T0iYlVM_h_Ojj2eTKe2GJ1CbCNZQJzh3BcKRLBZOmEzGpdCIJxKEeM5hmFJYkyciTk0acctSaQtteFZyVFDrQcMLGFSryr0EwrIiM9LgmkC8EcscwxAthC0TY7MoFkNIenYp23UW9wMurlSfQnapejYrz2YMO3xP0iGMNnTrtrfGvRSy_xqqrxxFW6fQ_P8bpas7la0VUzVXkbolVkPIN5S_SeZfvZX0IqNQbf1djK7c6rpWiJI8eJLRH7bkfjZAnLC7t-AH9IA9wi17rUBuGImQREiZJq_-4_hv4NH0bHaqTo_nJ_vwmPvKDz89Iz-AQfP92h0iHmvM607ffgJnZjCY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calculating+gait+kinematics+using+MR-based+kinematic+models&rft.jtitle=Gait+%26+posture&rft.au=Scheys%2C+Lennart&rft.au=Desloovere%2C+Kaat&rft.au=Spaepen%2C+Arthur&rft.au=Suetens%2C+Paul&rft.date=2011-02-01&rft.pub=Elsevier+B.V&rft.issn=0966-6362&rft.volume=33&rft.issue=2&rft.spage=158&rft.epage=164&rft_id=info:doi/10.1016%2Fj.gaitpost.2010.11.003&rft.externalDocID=S0966636210003917 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09666362%2FS0966636211X00024%2Fcov150h.gif |