Calculating gait kinematics using MR-based kinematic models

Rescaling generic models is the most frequently applied approach in generating biomechanical models for inverse kinematics. Nevertheless it is well known that this procedure introduces errors in calculated gait kinematics due to: (1) errors associated with palpation of anatomical landmarks, (2) inac...

Full description

Saved in:
Bibliographic Details
Published inGait & posture Vol. 33; no. 2; pp. 158 - 164
Main Authors Scheys, Lennart, Desloovere, Kaat, Spaepen, Arthur, Suetens, Paul, Jonkers, Ilse
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 01.02.2011
Subjects
Online AccessGet full text
ISSN0966-6362
1879-2219
1879-2219
DOI10.1016/j.gaitpost.2010.11.003

Cover

Loading…
Abstract Rescaling generic models is the most frequently applied approach in generating biomechanical models for inverse kinematics. Nevertheless it is well known that this procedure introduces errors in calculated gait kinematics due to: (1) errors associated with palpation of anatomical landmarks, (2) inaccuracies in the definition of joint coordinate systems. Based on magnetic resonance (MR) images, more accurate, subject-specific kinematic models can be built that are significantly less sensitive to both error types. We studied the difference between the two modelling techniques by quantifying differences in calculated hip and knee joint kinematics during gait. In a clinically relevant patient group of 7 pediatric cerebral palsy (CP) subjects with increased femoral anteversion, gait kinematic were calculated using (1) rescaled generic kinematic models and (2) subject-specific MR-based models. In addition, both sets of kinematics were compared to those obtained using the standard clinical data processing workflow. Inverse kinematics, calculated using rescaled generic models or the standard clinical workflow, differed largely compared to kinematics calculated using subject-specific MR-based kinematic models. The kinematic differences were most pronounced in the sagittal and transverse planes (hip and knee flexion, hip rotation). This study shows that MR-based kinematic models improve the reliability of gait kinematics, compared to generic models based on normal subjects. This is the case especially in CP subjects where bony deformations may alter the relative configuration of joint coordinate systems. Whilst high cost impedes the implementation of this modeling technique, our results demonstrate that efforts should be made to improve the level of subject-specific detail in the joint axes determination.
AbstractList Rescaling generic models is the most frequently applied approach in generating biomechanical models for inverse kinematics. Nevertheless it is well known that this procedure introduces errors in calculated gait kinematics due to: (1) errors associated with palpation of anatomical landmarks, (2) inaccuracies in the definition of joint coordinate systems. Based on magnetic resonance (MR) images, more accurate, subject-specific kinematic models can be built that are significantly less sensitive to both error types. We studied the difference between the two modelling techniques by quantifying differences in calculated hip and knee joint kinematics during gait. In a clinically relevant patient group of 7 pediatric cerebral palsy (CP) subjects with increased femoral anteversion, gait kinematic were calculated using (1) rescaled generic kinematic models and (2) subject-specific MR-based models. In addition, both sets of kinematics were compared to those obtained using the standard clinical data processing workflow. Inverse kinematics, calculated using rescaled generic models or the standard clinical workflow, differed largely compared to kinematics calculated using subject-specific MR-based kinematic models. The kinematic differences were most pronounced in the sagittal and transverse planes (hip and knee flexion, hip rotation). This study shows that MR-based kinematic models improve the reliability of gait kinematics, compared to generic models based on normal subjects. This is the case especially in CP subjects where bony deformations may alter the relative configuration of joint coordinate systems. Whilst high cost impedes the implementation of this modeling technique, our results demonstrate that efforts should be made to improve the level of subject-specific detail in the joint axes determination.Rescaling generic models is the most frequently applied approach in generating biomechanical models for inverse kinematics. Nevertheless it is well known that this procedure introduces errors in calculated gait kinematics due to: (1) errors associated with palpation of anatomical landmarks, (2) inaccuracies in the definition of joint coordinate systems. Based on magnetic resonance (MR) images, more accurate, subject-specific kinematic models can be built that are significantly less sensitive to both error types. We studied the difference between the two modelling techniques by quantifying differences in calculated hip and knee joint kinematics during gait. In a clinically relevant patient group of 7 pediatric cerebral palsy (CP) subjects with increased femoral anteversion, gait kinematic were calculated using (1) rescaled generic kinematic models and (2) subject-specific MR-based models. In addition, both sets of kinematics were compared to those obtained using the standard clinical data processing workflow. Inverse kinematics, calculated using rescaled generic models or the standard clinical workflow, differed largely compared to kinematics calculated using subject-specific MR-based kinematic models. The kinematic differences were most pronounced in the sagittal and transverse planes (hip and knee flexion, hip rotation). This study shows that MR-based kinematic models improve the reliability of gait kinematics, compared to generic models based on normal subjects. This is the case especially in CP subjects where bony deformations may alter the relative configuration of joint coordinate systems. Whilst high cost impedes the implementation of this modeling technique, our results demonstrate that efforts should be made to improve the level of subject-specific detail in the joint axes determination.
Rescaling generic models is the most frequently applied approach in generating biomechanical models for inverse kinematics. Nevertheless it is well known that this procedure introduces errors in calculated gait kinematics due to: (1) errors associated with palpation of anatomical landmarks, (2) inaccuracies in the definition of joint coordinate systems. Based on magnetic resonance (MR) images, more accurate, subject-specific kinematic models can be built that are significantly less sensitive to both error types. We studied the difference between the two modelling techniques by quantifying differences in calculated hip and knee joint kinematics during gait. In a clinically relevant patient group of 7 pediatric cerebral palsy (CP) subjects with increased femoral anteversion, gait kinematic were calculated using (1) rescaled generic kinematic models and (2) subject-specific MR-based models. In addition, both sets of kinematics were compared to those obtained using the standard clinical data processing workflow. Inverse kinematics, calculated using rescaled generic models or the standard clinical workflow, differed largely compared to kinematics calculated using subject-specific MR-based kinematic models. The kinematic differences were most pronounced in the sagittal and transverse planes (hip and knee flexion, hip rotation). This study shows that MR-based kinematic models improve the reliability of gait kinematics, compared to generic models based on normal subjects. This is the case especially in CP subjects where bony deformations may alter the relative configuration of joint coordinate systems. Whilst high cost impedes the implementation of this modeling technique, our results demonstrate that efforts should be made to improve the level of subject-specific detail in the joint axes determination.
Abstract Rescaling generic models is the most frequently applied approach in generating biomechanical models for inverse kinematics. Nevertheless it is well known that this procedure introduces errors in calculated gait kinematics due to: (1) errors associated with palpation of anatomical landmarks, (2) inaccuracies in the definition of joint coordinate systems. Based on magnetic resonance (MR) images, more accurate, subject-specific kinematic models can be built that are significantly less sensitive to both error types. We studied the difference between the two modelling techniques by quantifying differences in calculated hip and knee joint kinematics during gait. In a clinically relevant patient group of 7 pediatric cerebral palsy (CP) subjects with increased femoral anteversion, gait kinematic were calculated using (1) rescaled generic kinematic models and (2) subject-specific MR-based models. In addition, both sets of kinematics were compared to those obtained using the standard clinical data processing workflow. Inverse kinematics, calculated using rescaled generic models or the standard clinical workflow, differed largely compared to kinematics calculated using subject-specific MR-based kinematic models. The kinematic differences were most pronounced in the sagittal and transverse planes (hip and knee flexion, hip rotation). This study shows that MR-based kinematic models improve the reliability of gait kinematics, compared to generic models based on normal subjects. This is the case especially in CP subjects where bony deformations may alter the relative configuration of joint coordinate systems. Whilst high cost impedes the implementation of this modeling technique, our results demonstrate that efforts should be made to improve the level of subject-specific detail in the joint axes determination.
Rescaling generic models is the most frequently applied approach in generating biomechanical models for inverse kinematics. Nevertheless it is well known that this procedure introduces errors in calculated gait kinematics due to: (1) errors associated with palpation of anatomical landmarks, (2) inaccuracies in the definition of joint coordinate systems. Based on magnetic resonance (MR) images, more accurate, subject-specific kinematic models can be built that are significantly less sensitive to both error types. We studied the difference between the two modelling techniques by quantifying differences in calculated hip and knee joint kinematics during gait. In a clinically relevant patient group of 7 pediatric cerebral palsy (CP) subjects with increased femoral anteversion, gait kinematic were calculated using (1) rescaled generic kinematic models and (2) subject-specific MR-based models. In addition, both sets of kinematics were compared to those obtained using the standard clinical data processing workflow. Inverse kinematics, calculated using rescaled generic models or the standard clinical workflow, differed largely compared to kinematics calculated using subject-specific MR-based kinematic models. The kinematic differences were most pronounced in the sagittal and transverse planes (hip and knee flexion, hip rotation). This study shows that MR-based kinematic models improve the reliability of gait kinematics, compared to generic models based on normal subjects. This is the case especially in CP subjects where bony deformations may alter the relative configuration of joint coordinate systems. Whilst high cost impedes the implementation of this modeling technique, our results demonstrate that efforts should be made to improve the level of subject-specific detail in the joint axes determination.
Author Desloovere, Kaat
Scheys, Lennart
Suetens, Paul
Jonkers, Ilse
Spaepen, Arthur
Author_xml – sequence: 1
  givenname: Lennart
  surname: Scheys
  fullname: Scheys, Lennart
  email: Lennart.scheys@uz.kuleuven.ac.be
  organization: Medical Image Computing (Radiology – ESAT/PSI), University Hospital Leuven Campus, Gasthuisberg, Herestraat 4, B-3000 Leuven, Belgium
– sequence: 2
  givenname: Kaat
  surname: Desloovere
  fullname: Desloovere, Kaat
  organization: Clinical Movement Laboratory, University Hospital Leuven Campus Pellenberg, Weligerveld 1, 3212 Lubbeek (Pellenberg), Belgium
– sequence: 3
  givenname: Arthur
  surname: Spaepen
  fullname: Spaepen, Arthur
  organization: Department of Kinesiology, FABER/K.U.Leuven, Tervuursevest 101, B-3000 Leuven, Belgium
– sequence: 4
  givenname: Paul
  surname: Suetens
  fullname: Suetens, Paul
  organization: Medical Image Computing (Radiology – ESAT/PSI), University Hospital Leuven Campus, Gasthuisberg, Herestraat 4, B-3000 Leuven, Belgium
– sequence: 5
  givenname: Ilse
  surname: Jonkers
  fullname: Jonkers, Ilse
  organization: Department of Kinesiology, FABER/K.U.Leuven, Tervuursevest 101, B-3000 Leuven, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21247765$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9r3DAQxUVJaDZpv0LYW0_eaiRZkmkpLUvaBlIK_XMWsjwbtJGtrWQX8u0js1kKOXRzEhq990bMb87JyRAHJOQS6AooyLfb1a314y7mccXoXIQVpfwFWYBWTcUYNCdkQRspK8klOyPnOW8ppYJr9pKcMWBCKVkvyLu1DW4KdvTD7XKOXN75Aftyd3k55bn67UfV2ozdv5dlHzsM-RU53diQ8fXjeUF-f776tf5a3Xz_cr3-dFO5WsBYoWAMO64bzQWKViu-EZYqqEECotCqc21TCy5bSZkDqVxnW6Y3TDXCMcb4BXmzz92l-GfCPJreZ4ch2AHjlE0xS6g5haNK3Uhda14_Q1lzxgQoWpSXj8qp7bEzu-R7m-7NYYZF8H4vcCnmnHBjnB_LmOIwJuuDAWpmZGZrDsjMjMwAmIKs2OUT-6HDUePHvbGgwL8ek8nO4-Cw8wndaLroj0d8eBLhgh-8s-EO7zFv45SGQtaAycxQ83NeqHmfoKwSb0D9P-A5P3gAuBTcZA
CitedBy_id crossref_primary_10_1080_10255842_2016_1171855
crossref_primary_10_1016_j_ptsp_2021_01_012
crossref_primary_10_1115_1_4040943
crossref_primary_10_1080_10255842_2013_873034
crossref_primary_10_1080_10255842_2015_1042464
crossref_primary_10_1007_s11517_015_1269_8
crossref_primary_10_3389_fnbot_2019_00054
crossref_primary_10_1016_j_medengphy_2012_10_004
crossref_primary_10_1371_journal_pone_0157010
crossref_primary_10_1371_journal_pone_0235966
crossref_primary_10_1016_j_jbiomech_2016_05_001
crossref_primary_10_1155_2019_8381351
crossref_primary_10_1016_j_jbiomech_2011_01_001
crossref_primary_10_1016_j_spinee_2020_02_004
crossref_primary_10_1080_10255842_2017_1390568
crossref_primary_10_1177_0954411917702931
crossref_primary_10_1016_j_jbiomech_2015_09_040
crossref_primary_10_1016_j_clinbiomech_2021_105402
crossref_primary_10_1016_j_jbiomech_2016_03_052
crossref_primary_10_3390_app12157918
crossref_primary_10_1016_j_clinbiomech_2015_02_005
crossref_primary_10_1007_s10439_020_02569_y
crossref_primary_10_1016_j_jbiomech_2018_01_021
crossref_primary_10_1016_j_jbiomech_2018_03_039
crossref_primary_10_1007_s00371_014_0983_9
crossref_primary_10_1016_j_jbiomech_2020_109946
crossref_primary_10_1016_j_gaitpost_2015_04_018
crossref_primary_10_1016_j_gaitpost_2023_04_017
crossref_primary_10_1016_j_jbiomech_2022_111170
crossref_primary_10_1016_j_jbiomech_2011_08_022
crossref_primary_10_1016_j_gaitpost_2013_01_022
crossref_primary_10_1016_j_gaitpost_2022_11_019
crossref_primary_10_1142_S0218957716300015
crossref_primary_10_1007_s10439_015_1451_z
crossref_primary_10_1016_j_gaitpost_2018_06_142
crossref_primary_10_1002_wsbm_1368
crossref_primary_10_1016_j_jbiomech_2017_01_030
crossref_primary_10_1115_1_4038741
crossref_primary_10_3389_fnhum_2020_00040
Cites_doi 10.1016/j.jbiomech.2004.02.047
10.1007/BF02513282
10.1002/jor.1100080310
10.1016/S0167-9457(96)00055-3
10.1016/S0021-9290(00)00093-2
10.1007/s10439-009-9852-5
10.1016/S0021-9290(03)00087-3
10.1016/j.gaitpost.2004.04.004
10.1016/S0021-9290(01)00222-6
10.1016/0268-0033(95)00046-1
10.1016/0167-9457(91)90046-Z
10.1016/j.gaitpost.2007.04.009
10.1016/S0021-9290(00)00056-7
10.1016/j.gaitpost.2008.05.002
10.1016/j.gaitpost.2004.05.003
10.1016/j.gaitpost.2005.08.002
10.1016/j.jbiomech.2004.01.025
10.1055/s-2004-815676
10.1007/11790273_7
10.1097/MOP.0b013e3280118a6d
10.1016/j.acra.2005.08.006
10.3109/10929080009148877
10.1016/S0966-6362(99)00047-8
10.1016/j.gaitpost.2004.05.002
10.1016/S0021-9290(01)00052-5
10.1016/S0966-6362(00)00046-1
10.1055/s-2004-815673
10.1016/j.clinbiomech.2009.11.008
10.1007/s00221-001-0987-3
10.1109/34.121791
10.1016/S0021-9290(98)00158-4
10.1016/0021-9290(89)90179-6
ContentType Journal Article
Copyright 2010 Elsevier B.V.
Elsevier B.V.
Copyright © 2010 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: Elsevier B.V.
– notice: Copyright © 2010 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TS
DOI 10.1016/j.gaitpost.2010.11.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Physical Education Index
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Physical Education Index
DatabaseTitleList MEDLINE - Academic
MEDLINE

Physical Education Index


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1879-2219
EndPage 164
ExternalDocumentID 21247765
10_1016_j_gaitpost_2010_11_003
S0966636210003917
1_s2_0_S0966636210003917
Genre Journal Article
Comparative Study
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29H
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OF0
OR.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
UPT
UV1
WH7
WUQ
YRY
Z5R
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
YCJ
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TS
ID FETCH-LOGICAL-c541t-e422ed389834e4b873f4a0715161ee487dcb95436b602c167cdab28f2794c2223
IEDL.DBID .~1
ISSN 0966-6362
1879-2219
IngestDate Fri Jul 11 03:36:00 EDT 2025
Fri Jul 11 06:27:42 EDT 2025
Tue Aug 05 11:13:00 EDT 2025
Mon Jul 21 05:51:49 EDT 2025
Tue Jul 01 04:22:19 EDT 2025
Thu Apr 24 23:10:38 EDT 2025
Fri Feb 23 02:33:11 EST 2024
Sun Feb 23 10:18:54 EST 2025
Tue Aug 26 18:56:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Cerebral palsy
Magnetic resonance imaging
Gait
Subject-specific kinematic models
Inverse kinematics
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2010 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-e422ed389834e4b873f4a0715161ee487dcb95436b602c167cdab28f2794c2223
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 21247765
PQID 853224170
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_954615301
proquest_miscellaneous_896858351
proquest_miscellaneous_853224170
pubmed_primary_21247765
crossref_citationtrail_10_1016_j_gaitpost_2010_11_003
crossref_primary_10_1016_j_gaitpost_2010_11_003
elsevier_sciencedirect_doi_10_1016_j_gaitpost_2010_11_003
elsevier_clinicalkeyesjournals_1_s2_0_S0966636210003917
elsevier_clinicalkey_doi_10_1016_j_gaitpost_2010_11_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-01
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Gait & posture
PublicationTitleAlternate Gait Posture
PublicationYear 2011
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Schache, Baker, Lamoreux (bib0075) 2006; 24
Scheys, Jonkers, Loeckx, Maes, Spaepen, Suetens (bib0100) 2006; 4072
Besier, Sturnieks, Alderson, Lloyd (bib0055) 2003; 36
Wu, Siegler, Allard, Kirtley, Leardini, Rosenbaum (bib0175) 2002; 35
Stagni, Leardini, Cappozzo, Benedetti, Cappello (bib0060) 2000; 33
Scheys, Van Campenhout, Spaepen, Suetens, Jonkers (bib0105) 2008; 28
Schutte, Narayanan, Stout, Selber, Gage, Schwartz (bib0025) 2000; 11
Arnold, Salinas, Asakawa, Delp (bib0170) 2000; 5
Davis, Ounpuu, Tyburski, Gage (bib0110) 1991; 10
Piazza, Cavanagh (bib0085) 2000; 33
Chiari, Della Croce, Leardini, Cappozzo (bib0040) 2005; 21
Narayanan (bib0010) 2007; 9
Gage (bib0005) 2009
Piazza, Okita, Cavanagh (bib0070) 2001; 34
Lopomo, Sun, Zaffagnini, Giordano, Safran (bib0065) 2009; 25
Verschueren, Swinnen, Desloovere, Duysens (bib0115) 2002; 143
Arnold, Asakawa, Delp (bib0125) 2000; 11
Lu, O’Connor (bib0090) 1999; 32
Kadaba, Ramakrishnan, Wootten (bib0020) 1990; 8
Cohen (bib0140) 1988
Della Croce, Leardini, Chiari, Cappozzo (bib0030) 2005; 21
Shellock (bib0155) 2003; 7
Gilles, Perrin, Magnenat-Thalmann, Vallee (bib0165) 2005; 12
Simon (bib0015) 2004; 37
Besl, McKay (bib0135) 1992; 14
Cappozzo, Catani, Leardini, Benedetti, Della Croce (bib0035) 1996; 11
Yamaguchi, Zajac (bib0150) 1989; 22
Leardini, Chiari, Della Croce, Cappozzo (bib0045) 2005; 21
Cappello, Cappozzo, La Palombara, Lucchetti, Leardini (bib0050) 1997; 16
Arnold, Ward, Lieber, Delp (bib0130) 2010; 38
Della Croce, Cappozzo, Kerrigan (bib0145) 1999; 37
Asakawa, Pappas, Blemker, Drace, Delp (bib0160) 2003; 7
Most, Axe, Rubash, Li (bib0080) 2004; 37
Donati, Camomilla, Vannozzi, Cappozzo (bib0095) 2007; 26
Delp, Loan, Hoy, Zajac, Topp, Rosen (bib0120) 1990; 37
Davis (10.1016/j.gaitpost.2010.11.003_bib0110) 1991; 10
Schutte (10.1016/j.gaitpost.2010.11.003_bib0025) 2000; 11
Wu (10.1016/j.gaitpost.2010.11.003_bib0175) 2002; 35
Donati (10.1016/j.gaitpost.2010.11.003_bib0095) 2007; 26
Delp (10.1016/j.gaitpost.2010.11.003_bib0120) 1990; 37
Schache (10.1016/j.gaitpost.2010.11.003_bib0075) 2006; 24
Shellock (10.1016/j.gaitpost.2010.11.003_bib0155) 2003; 7
Stagni (10.1016/j.gaitpost.2010.11.003_bib0060) 2000; 33
Della Croce (10.1016/j.gaitpost.2010.11.003_bib0030) 2005; 21
Piazza (10.1016/j.gaitpost.2010.11.003_bib0070) 2001; 34
Narayanan (10.1016/j.gaitpost.2010.11.003_bib0010) 2007; 9
Leardini (10.1016/j.gaitpost.2010.11.003_bib0045) 2005; 21
Cappello (10.1016/j.gaitpost.2010.11.003_bib0050) 1997; 16
Scheys (10.1016/j.gaitpost.2010.11.003_bib0100) 2006; 4072
Scheys (10.1016/j.gaitpost.2010.11.003_bib0105) 2008; 28
Arnold (10.1016/j.gaitpost.2010.11.003_bib0125) 2000; 11
Della Croce (10.1016/j.gaitpost.2010.11.003_bib0145) 1999; 37
Cappozzo (10.1016/j.gaitpost.2010.11.003_bib0035) 1996; 11
Gilles (10.1016/j.gaitpost.2010.11.003_bib0165) 2005; 12
Lopomo (10.1016/j.gaitpost.2010.11.003_bib0065) 2009; 25
Yamaguchi (10.1016/j.gaitpost.2010.11.003_bib0150) 1989; 22
Arnold (10.1016/j.gaitpost.2010.11.003_bib0170) 2000; 5
Chiari (10.1016/j.gaitpost.2010.11.003_bib0040) 2005; 21
Besier (10.1016/j.gaitpost.2010.11.003_bib0055) 2003; 36
Lu (10.1016/j.gaitpost.2010.11.003_bib0090) 1999; 32
Asakawa (10.1016/j.gaitpost.2010.11.003_bib0160) 2003; 7
Piazza (10.1016/j.gaitpost.2010.11.003_bib0085) 2000; 33
Arnold (10.1016/j.gaitpost.2010.11.003_bib0130) 2010; 38
Besl (10.1016/j.gaitpost.2010.11.003_bib0135) 1992; 14
Cohen (10.1016/j.gaitpost.2010.11.003_bib0140) 1988
Most (10.1016/j.gaitpost.2010.11.003_bib0080) 2004; 37
Verschueren (10.1016/j.gaitpost.2010.11.003_bib0115) 2002; 143
Simon (10.1016/j.gaitpost.2010.11.003_bib0015) 2004; 37
Kadaba (10.1016/j.gaitpost.2010.11.003_bib0020) 1990; 8
Gage (10.1016/j.gaitpost.2010.11.003_bib0005) 2009
References_xml – volume: 25
  start-page: 206
  year: 2009
  end-page: 212
  ident: bib0065
  article-title: Evaluation of formal methods in hip joint center assessment: an in vitro analysis
  publication-title: Clinical Biomechanics
– volume: 26
  start-page: 179
  year: 2007
  end-page: 185
  ident: bib0095
  article-title: Enhanced anatomical calibration in human movement analysis
  publication-title: Gait & Posture
– volume: 5
  start-page: 108
  year: 2000
  end-page: 119
  ident: bib0170
  article-title: Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity
  publication-title: Computer Aided Surgery
– volume: 22
  start-page: 1
  year: 1989
  end-page: 10
  ident: bib0150
  article-title: A planar model of the knee joint to characterize the knee extensor mechanism
  publication-title: Journal of Biomechanics
– volume: 8
  start-page: 383
  year: 1990
  end-page: 392
  ident: bib0020
  article-title: Measurement of lower extremity kinematics during level walking
  publication-title: Journal of Orthopaedic Research
– volume: 21
  start-page: 197
  year: 2005
  end-page: 211
  ident: bib0040
  article-title: Human movement analysis using stereophotogrammetry: part 2: instrumental errors
  publication-title: Gait & Posture
– year: 1988
  ident: bib0140
  article-title: Statistical power analysis for the behavioral sciences
– volume: 12
  start-page: 1285
  year: 2005
  end-page: 1292
  ident: bib0165
  article-title: Bone motion analysis from dynamic MRI: acquisition and tracking
  publication-title: Academic Radiology
– volume: 7
  start-page: 249
  year: 2003
  end-page: 276
  ident: bib0155
  article-title: Functional assessment of the joints using kinematic magnetic resonance imaging
  publication-title: Seminars in Musculoskeletal Radiology
– volume: 21
  start-page: 226
  year: 2005
  end-page: 237
  ident: bib0030
  article-title: Human movement analysis using stereophotogrammetry. Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics
  publication-title: Gait & Posture
– volume: 37
  start-page: 757
  year: 1990
  end-page: 767
  ident: bib0120
  article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: IEEE Transactions on Medical Imaging
– volume: 10
  start-page: 575
  year: 1991
  end-page: 587
  ident: bib0110
  article-title: A gait analysis data collection and reduction technique
  publication-title: Human Movement Science
– volume: 35
  start-page: 543
  year: 2002
  end-page: 548
  ident: bib0175
  article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part 1: ankle, hip, and spine
  publication-title: Journal of Biomechanics
– volume: 9
  start-page: 38
  year: 2007
  end-page: 43
  ident: bib0010
  article-title: The role of gait analysis in the orthopaedic management of ambulatory cerebral palsy
  publication-title: Current Opinion in Pediatrics
– volume: 11
  start-page: 25
  year: 2000
  end-page: 31
  ident: bib0025
  article-title: An index for quantifying deviations from normal gait
  publication-title: Gait Posture
– year: 2009
  ident: bib0005
  article-title: The treatment of gait problems in cerebral palsy
– volume: 4072
  start-page: 58
  year: 2006
  end-page: 66
  ident: bib0100
  article-title: Image based musculoskeletal modeling allows personalized biomechanical analysis of gait
  publication-title: Lecture Notes in Computer Science
– volume: 33
  start-page: 1029
  year: 2000
  end-page: 1034
  ident: bib0085
  article-title: Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment
  publication-title: Journal of Biomechanics
– volume: 38
  start-page: 269
  year: 2010
  end-page: 279
  ident: bib0130
  article-title: A musculoskeletal model for predicting moment generation capacity of human lower limb muscles
  publication-title: Annals of Biomedical Engineering
– volume: 37
  start-page: 1743
  year: 2004
  end-page: 1748
  ident: bib0080
  article-title: Sensitivity of the knee joint kinematics calculation to selection of flexion axes
  publication-title: Journal of Biomechanics
– volume: 11
  start-page: 181
  year: 2000
  end-page: 190
  ident: bib0125
  article-title: Do the hamstrings and adductors contribute to excessive internal rotation of the hip in persons with cerebral palsy?
  publication-title: Gait & Posture
– volume: 21
  start-page: 212
  year: 2005
  end-page: 225
  ident: bib0045
  article-title: Human movement analysis using stereophotogrammetry: part 3. Soft tissue artifact assessment and compensation
  publication-title: Gait & Posture
– volume: 24
  start-page: 100
  year: 2006
  end-page: 109
  ident: bib0075
  article-title: Defining the knee joint flexion–extension axis for purposes of quantitative gait analysis: an evaluation of methods
  publication-title: Gait & Posture
– volume: 32
  start-page: 129
  year: 1999
  end-page: 134
  ident: bib0090
  article-title: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints
  publication-title: Journal of Biomechanics
– volume: 16
  start-page: 259
  year: 1997
  end-page: 274
  ident: bib0050
  article-title: Multiple anatomical landmark calibration for optimal bone pose estimation
  publication-title: Human Movement Science
– volume: 33
  start-page: 1479
  year: 2000
  end-page: 1487
  ident: bib0060
  article-title: Effects of hip joint centre mislocation on gait analysis results
  publication-title: Journal of Biomechanics
– volume: 11
  start-page: 90
  year: 1996
  end-page: 100
  ident: bib0035
  article-title: Position and orientation in space of bones during movement, experimental artefacts
  publication-title: Clinical Biomechanics
– volume: 34
  start-page: 967
  year: 2001
  end-page: 973
  ident: bib0070
  article-title: Accuracy of the functional method of hip joint center location: effects of limited motion and varied implementation
  publication-title: Journal of Biomechanics
– volume: 14
  start-page: 239
  year: 1992
  end-page: 256
  ident: bib0135
  article-title: A method for registration of 3-d shapes
  publication-title: IEEE Pattern Analysis and Machine Intelligence
– volume: 37
  start-page: 155
  year: 1999
  end-page: 161
  ident: bib0145
  article-title: Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles
  publication-title: Medical and Biological Engineering and Computing
– volume: 7
  start-page: 287
  year: 2003
  end-page: 295
  ident: bib0160
  article-title: Cinephase-contrast magnetic resonance imaging as a tool for quantification of skeletal muscle motion
  publication-title: Seminars in Musculoskeletal Radiology
– volume: 28
  start-page: 358
  year: 2008
  end-page: 365
  ident: bib0105
  article-title: Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths
  publication-title: Gait & Posture
– volume: 143
  start-page: 231
  year: 2002
  end-page: 239
  ident: bib0115
  article-title: Effects of tendon vibration on the spatiotemporal characteristics of human locomotion
  publication-title: Experimental Brain Research
– volume: 37
  start-page: 1869
  year: 2004
  end-page: 1880
  ident: bib0015
  article-title: Quantification of human motion: gait analysis—benefits and limitations to its application to clinical problems
  publication-title: Journal of Biomechanics
– volume: 36
  start-page: 1159
  year: 2003
  end-page: 1168
  ident: bib0055
  article-title: Repeatability of gait data using a functional hip joint centre and a mean helical knee axis
  publication-title: Journal of Biomechanics
– volume: 37
  start-page: 1869
  year: 2004
  ident: 10.1016/j.gaitpost.2010.11.003_bib0015
  article-title: Quantification of human motion: gait analysis—benefits and limitations to its application to clinical problems
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2004.02.047
– volume: 37
  start-page: 155
  issue: 2
  year: 1999
  ident: 10.1016/j.gaitpost.2010.11.003_bib0145
  article-title: Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles
  publication-title: Medical and Biological Engineering and Computing
  doi: 10.1007/BF02513282
– year: 1988
  ident: 10.1016/j.gaitpost.2010.11.003_bib0140
– volume: 8
  start-page: 383
  year: 1990
  ident: 10.1016/j.gaitpost.2010.11.003_bib0020
  article-title: Measurement of lower extremity kinematics during level walking
  publication-title: Journal of Orthopaedic Research
  doi: 10.1002/jor.1100080310
– volume: 16
  start-page: 259
  issue: 2–3
  year: 1997
  ident: 10.1016/j.gaitpost.2010.11.003_bib0050
  article-title: Multiple anatomical landmark calibration for optimal bone pose estimation
  publication-title: Human Movement Science
  doi: 10.1016/S0167-9457(96)00055-3
– volume: 33
  start-page: 1479
  issue: 11
  year: 2000
  ident: 10.1016/j.gaitpost.2010.11.003_bib0060
  article-title: Effects of hip joint centre mislocation on gait analysis results
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(00)00093-2
– volume: 38
  start-page: 269
  issue: 2
  year: 2010
  ident: 10.1016/j.gaitpost.2010.11.003_bib0130
  article-title: A musculoskeletal model for predicting moment generation capacity of human lower limb muscles
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-009-9852-5
– volume: 36
  start-page: 1159
  issue: 8
  year: 2003
  ident: 10.1016/j.gaitpost.2010.11.003_bib0055
  article-title: Repeatability of gait data using a functional hip joint centre and a mean helical knee axis
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(03)00087-3
– volume: 21
  start-page: 197
  issue: 2
  year: 2005
  ident: 10.1016/j.gaitpost.2010.11.003_bib0040
  article-title: Human movement analysis using stereophotogrammetry: part 2: instrumental errors
  publication-title: Gait & Posture
  doi: 10.1016/j.gaitpost.2004.04.004
– volume: 35
  start-page: 543
  year: 2002
  ident: 10.1016/j.gaitpost.2010.11.003_bib0175
  article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part 1: ankle, hip, and spine
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(01)00222-6
– volume: 11
  start-page: 90
  issue: 2
  year: 1996
  ident: 10.1016/j.gaitpost.2010.11.003_bib0035
  article-title: Position and orientation in space of bones during movement, experimental artefacts
  publication-title: Clinical Biomechanics
  doi: 10.1016/0268-0033(95)00046-1
– volume: 10
  start-page: 575
  issue: 5
  year: 1991
  ident: 10.1016/j.gaitpost.2010.11.003_bib0110
  article-title: A gait analysis data collection and reduction technique
  publication-title: Human Movement Science
  doi: 10.1016/0167-9457(91)90046-Z
– volume: 26
  start-page: 179
  issue: 2
  year: 2007
  ident: 10.1016/j.gaitpost.2010.11.003_bib0095
  article-title: Enhanced anatomical calibration in human movement analysis
  publication-title: Gait & Posture
  doi: 10.1016/j.gaitpost.2007.04.009
– year: 2009
  ident: 10.1016/j.gaitpost.2010.11.003_bib0005
– volume: 33
  start-page: 1029
  issue: 8
  year: 2000
  ident: 10.1016/j.gaitpost.2010.11.003_bib0085
  article-title: Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(00)00056-7
– volume: 28
  start-page: 358
  issue: 3
  year: 2008
  ident: 10.1016/j.gaitpost.2010.11.003_bib0105
  article-title: Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths
  publication-title: Gait & Posture
  doi: 10.1016/j.gaitpost.2008.05.002
– volume: 21
  start-page: 226
  issue: 2
  year: 2005
  ident: 10.1016/j.gaitpost.2010.11.003_bib0030
  article-title: Human movement analysis using stereophotogrammetry. Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics
  publication-title: Gait & Posture
  doi: 10.1016/j.gaitpost.2004.05.003
– volume: 24
  start-page: 100
  issue: 1
  year: 2006
  ident: 10.1016/j.gaitpost.2010.11.003_bib0075
  article-title: Defining the knee joint flexion–extension axis for purposes of quantitative gait analysis: an evaluation of methods
  publication-title: Gait & Posture
  doi: 10.1016/j.gaitpost.2005.08.002
– volume: 37
  start-page: 1743
  issue: 11
  year: 2004
  ident: 10.1016/j.gaitpost.2010.11.003_bib0080
  article-title: Sensitivity of the knee joint kinematics calculation to selection of flexion axes
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2004.01.025
– volume: 7
  start-page: 287
  issue: 4
  year: 2003
  ident: 10.1016/j.gaitpost.2010.11.003_bib0160
  article-title: Cinephase-contrast magnetic resonance imaging as a tool for quantification of skeletal muscle motion
  publication-title: Seminars in Musculoskeletal Radiology
  doi: 10.1055/s-2004-815676
– volume: 4072
  start-page: 58
  year: 2006
  ident: 10.1016/j.gaitpost.2010.11.003_bib0100
  article-title: Image based musculoskeletal modeling allows personalized biomechanical analysis of gait
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/11790273_7
– volume: 9
  start-page: 38
  year: 2007
  ident: 10.1016/j.gaitpost.2010.11.003_bib0010
  article-title: The role of gait analysis in the orthopaedic management of ambulatory cerebral palsy
  publication-title: Current Opinion in Pediatrics
  doi: 10.1097/MOP.0b013e3280118a6d
– volume: 12
  start-page: 1285
  issue: 10
  year: 2005
  ident: 10.1016/j.gaitpost.2010.11.003_bib0165
  article-title: Bone motion analysis from dynamic MRI: acquisition and tracking
  publication-title: Academic Radiology
  doi: 10.1016/j.acra.2005.08.006
– volume: 5
  start-page: 108
  year: 2000
  ident: 10.1016/j.gaitpost.2010.11.003_bib0170
  article-title: Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity
  publication-title: Computer Aided Surgery
  doi: 10.3109/10929080009148877
– volume: 11
  start-page: 25
  issue: 1
  year: 2000
  ident: 10.1016/j.gaitpost.2010.11.003_bib0025
  article-title: An index for quantifying deviations from normal gait
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(99)00047-8
– volume: 21
  start-page: 212
  issue: 2
  year: 2005
  ident: 10.1016/j.gaitpost.2010.11.003_bib0045
  article-title: Human movement analysis using stereophotogrammetry: part 3. Soft tissue artifact assessment and compensation
  publication-title: Gait & Posture
  doi: 10.1016/j.gaitpost.2004.05.002
– volume: 34
  start-page: 967
  issue: 7
  year: 2001
  ident: 10.1016/j.gaitpost.2010.11.003_bib0070
  article-title: Accuracy of the functional method of hip joint center location: effects of limited motion and varied implementation
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(01)00052-5
– volume: 11
  start-page: 181
  issue: 3
  year: 2000
  ident: 10.1016/j.gaitpost.2010.11.003_bib0125
  article-title: Do the hamstrings and adductors contribute to excessive internal rotation of the hip in persons with cerebral palsy?
  publication-title: Gait & Posture
  doi: 10.1016/S0966-6362(00)00046-1
– volume: 7
  start-page: 249
  issue: 4
  year: 2003
  ident: 10.1016/j.gaitpost.2010.11.003_bib0155
  article-title: Functional assessment of the joints using kinematic magnetic resonance imaging
  publication-title: Seminars in Musculoskeletal Radiology
  doi: 10.1055/s-2004-815673
– volume: 25
  start-page: 206
  issue: 3
  year: 2009
  ident: 10.1016/j.gaitpost.2010.11.003_bib0065
  article-title: Evaluation of formal methods in hip joint center assessment: an in vitro analysis
  publication-title: Clinical Biomechanics
  doi: 10.1016/j.clinbiomech.2009.11.008
– volume: 143
  start-page: 231
  issue: 2
  year: 2002
  ident: 10.1016/j.gaitpost.2010.11.003_bib0115
  article-title: Effects of tendon vibration on the spatiotemporal characteristics of human locomotion
  publication-title: Experimental Brain Research
  doi: 10.1007/s00221-001-0987-3
– volume: 37
  start-page: 757
  issue: 8
  year: 1990
  ident: 10.1016/j.gaitpost.2010.11.003_bib0120
  article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: IEEE Transactions on Medical Imaging
– volume: 14
  start-page: 239
  issue: 2
  year: 1992
  ident: 10.1016/j.gaitpost.2010.11.003_bib0135
  article-title: A method for registration of 3-d shapes
  publication-title: IEEE Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.121791
– volume: 32
  start-page: 129
  issue: 2
  year: 1999
  ident: 10.1016/j.gaitpost.2010.11.003_bib0090
  article-title: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(98)00158-4
– volume: 22
  start-page: 1
  year: 1989
  ident: 10.1016/j.gaitpost.2010.11.003_bib0150
  article-title: A planar model of the knee joint to characterize the knee extensor mechanism
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(89)90179-6
SSID ssj0004382
Score 2.165849
Snippet Rescaling generic models is the most frequently applied approach in generating biomechanical models for inverse kinematics. Nevertheless it is well known that...
Abstract Rescaling generic models is the most frequently applied approach in generating biomechanical models for inverse kinematics. Nevertheless it is well...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 158
SubjectTerms Biomechanical Phenomena
Cerebral palsy
Cerebral Palsy - physiopathology
Child
Female
Gait
Gait - physiology
Hip Joint - physiology
Humans
Inverse kinematics
Knee Joint - physiology
Magnetic Resonance Imaging
Male
Models, Biological
Orthopedics
Subject-specific kinematic models
Title Calculating gait kinematics using MR-based kinematic models
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0966636210003917
https://www.clinicalkey.es/playcontent/1-s2.0-S0966636210003917
https://dx.doi.org/10.1016/j.gaitpost.2010.11.003
https://www.ncbi.nlm.nih.gov/pubmed/21247765
https://www.proquest.com/docview/853224170
https://www.proquest.com/docview/896858351
https://www.proquest.com/docview/954615301
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhhdBLaZM-to-gQ8hNWUuWJS89LUvD9rEhpAnkJiRZXjZNvUvtHHrpb--MbG9aQpqSnAzyDBbjmdEnaR6E7DmlpU94yVQpUiaFtMwKa1muCp5Y7nwZowlnR2p6Jj-dZ-cbZNLnwmBYZef7W58evXU3MuykOVwtFsOvAL5huVSCxwRTjhnlUmrU8oNf12EeeNEV6-0pxZD6jyzhi4O5XTSrZd20IV5YzbNvnnVzgboNgMaF6PApedIhSDpuJ_mMbIRqm-yMK9g9f_9J92mM6YyH5dtka9Zdne-Q9xN76WOvrmpOcUb0G4zHgq01xej3OZ2dMFzUius3NDbKqZ-Ts8MPp5Mp6zonMJ9J3rAghQgFYJE8lUG6XKeltAAmMsB3IcAepfBulMlUOZUIz5X2hXUiLwVYp0fE8IJsVssqvCKU50XutIMxCWAj1SPYg1gpfZk5nyepHJCsF5fxXVlx7G5xafr4sQvTi9mgmGHPgQVJB2S45lu1hTXu5ND93zB92ig4OgO-_36coe7stTbc1MIk5oZODchozfmXWv7XV2mvMgZsFi9ibBWWV7UBiITISSf_IBlhY4A047eTwA9EtJ4AyctWIdeCBDwitVbZ6wdM_w153J6fY-jOW7LZ_LgK7wCANW43WtgueTSenHw5xufHz9Oj35eTL2o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH8anQRcEGwwyjbwAXEzjR0nTsSpqpg6tvYAm7SbZTtO1THSimQH_nuenaQDTWMIro6fYr28j9-L3wfAW5NKYSNW0rTkMRVcaKq51jRLCxZpZmwZsgln83R6Lj5dJBdbMOlrYXxaZWf7W5serHW3Muq4OVovl6MvCL7RXaachQJTJh_Atu9OlQxge3x8Mp3flEfGYWaU3089wS-FwpfvF3rZrFd102Z5-Yae_fys2z7qLgwafNHRU3jSgUgybs_5DLZctQO74woD6G8_yDsS0jrD__IdeDjrbs934cNEX9kwrqtaEH8i8hXXQ8_WmvgE-AWZfaberxU3T0iYlVM_h_Ojj2eTKe2GJ1CbCNZQJzh3BcKRLBZOmEzGpdCIJxKEeM5hmFJYkyciTk0acctSaQtteFZyVFDrQcMLGFSryr0EwrIiM9LgmkC8EcscwxAthC0TY7MoFkNIenYp23UW9wMurlSfQnapejYrz2YMO3xP0iGMNnTrtrfGvRSy_xqqrxxFW6fQ_P8bpas7la0VUzVXkbolVkPIN5S_SeZfvZX0IqNQbf1djK7c6rpWiJI8eJLRH7bkfjZAnLC7t-AH9IA9wi17rUBuGImQREiZJq_-4_hv4NH0bHaqTo_nJ_vwmPvKDz89Iz-AQfP92h0iHmvM607ffgJnZjCY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calculating+gait+kinematics+using+MR-based+kinematic+models&rft.jtitle=Gait+%26+posture&rft.au=Scheys%2C+Lennart&rft.au=Desloovere%2C+Kaat&rft.au=Spaepen%2C+Arthur&rft.au=Suetens%2C+Paul&rft.date=2011-02-01&rft.pub=Elsevier+B.V&rft.issn=0966-6362&rft.volume=33&rft.issue=2&rft.spage=158&rft.epage=164&rft_id=info:doi/10.1016%2Fj.gaitpost.2010.11.003&rft.externalDocID=S0966636210003917
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09666362%2FS0966636211X00024%2Fcov150h.gif