Chiral BINOL-phosphate assembled single hexagonal nanotube in aqueous solution for confined rearrangement acceleration

Creating microenvironments that mimic an enzyme’s active site is a critical aspect of supramolecular confined catalysis. In this study, we employ the commonly used chiral 1,1’-bi-2-naphthol (BINOL) phosphates as subcomponents to construct supramolecular hollow nanotube in an aqueous medium through n...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; p. 2799
Main Authors Li, Kang, Qin, Wei-Min, Su, Wen-Xia, Hu, Jia-Min, Cai, Yue-Peng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 30.03.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Creating microenvironments that mimic an enzyme’s active site is a critical aspect of supramolecular confined catalysis. In this study, we employ the commonly used chiral 1,1’-bi-2-naphthol (BINOL) phosphates as subcomponents to construct supramolecular hollow nanotube in an aqueous medium through non-covalent intermolecular recognition and arrangement. The hexagonal nanotubular structure is characterized by various techniques, including X-ray, NMR, ESI-MS, AFM, and TEM, and is confirmed to exist in a homogeneous aqueous solution stably. The nanotube’s length in solution depends on the concentration of chiral BINOL-phosphate as a monomer. Additionally, the assembled nanotube can accelerate the rate of the 3-aza-Cope rearrangement reaction by up to 85-fold due to the interior confinement effect. Based on the detailed kinetic and thermodynamic analyses, we propose that the chain-like substrates are constrained and pre-organized into a reactive chair-like conformation, which stabilizes the transition state of the reaction in the confined nanospace of the nanotube. Notably, due to the restricted conformer with less degrees of freedom, the entropic barrier is significantly reduced compared to the enthalpic barrier, resulting in a more pronounced acceleration effect. Supramolecular confined catalysis aims to mimic the active pocket of an enzyme to enhance the efficiency and selectivity of catalytic reactions. Here, the authors describe the formation of chiral nanotubes stable in aqueous solution employing a chiral BINOL-phosphate which can accelerate the 3-aza-Cope rearrangement by a nanotubular interior confinement effect.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-47150-6