Atomic-scale strain engineering of atomically resolved Pt clusters transcending natural enzymes

Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt 1 ), several Pt atoms (Pt n...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 8346 - 18
Main Authors Chen, Ke, Li, Guo, Gong, Xiaoqun, Ren, Qinjuan, Wang, Junying, Zhao, Shuang, Liu, Ling, Yan, Yuxing, Liu, Qingshan, Cao, Yang, Ren, Yaoyao, Qin, Qiong, Xin, Qi, Liu, Shu-Lin, Yao, Peiyu, Zhang, Bo, Yang, Jingkai, Zhao, Ruoli, Li, Yuan, Luo, Ran, Fu, Yikai, Li, Yonghui, Long, Wei, Zhang, Shu, Dai, Haitao, Liu, Changlong, Zhang, Jianning, Chang, Jin, Mu, Xiaoyu, Zhang, Xiao-Dong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.09.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt 1 ), several Pt atoms (Pt n ) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the d -band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency ( K cat / K m ) of 1.50 × 10 9  mM −1  min −1 , about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder. Strain engineering is promising for improving catalytic capability of biocatalysts, but it is challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, the authors report the biocatalysts with atomically-resolved Pt clusters laminated on PdAu nanocrystals and show that the tensile strains contribute to the enzyme-like activities greater than that of natural enzymes.
AbstractList Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt1), several Pt atoms (Ptn) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the d-band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency (Kcat/Km) of 1.50 × 109 mM−1 min−1, about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder.Strain engineering is promising for improving catalytic capability of biocatalysts, but it is challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, the authors report the biocatalysts with atomically-resolved Pt clusters laminated on PdAu nanocrystals and show that the tensile strains contribute to the enzyme-like activities greater than that of natural enzymes.
Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt1), several Pt atoms (Ptn) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the d-band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency (Kcat/Km) of 1.50 × 109 mM-1 min-1, about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder.Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt1), several Pt atoms (Ptn) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the d-band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency (Kcat/Km) of 1.50 × 109 mM-1 min-1, about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder.
Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt 1 ), several Pt atoms (Pt n ) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the d -band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency ( K cat / K m ) of 1.50 × 10 9  mM −1  min −1 , about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder. Strain engineering is promising for improving catalytic capability of biocatalysts, but it is challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, the authors report the biocatalysts with atomically-resolved Pt clusters laminated on PdAu nanocrystals and show that the tensile strains contribute to the enzyme-like activities greater than that of natural enzymes.
Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt ), several Pt atoms (Pt ) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the d-band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency (K /K ) of 1.50 × 10  mM  min , about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder.
Abstract Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt1), several Pt atoms (Ptn) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the d-band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency (K cat/K m) of 1.50 × 109 mM−1 min−1, about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder.
ArticleNumber 8346
Author Zhao, Shuang
Ren, Qinjuan
Fu, Yikai
Yang, Jingkai
Zhao, Ruoli
Cao, Yang
Zhang, Bo
Dai, Haitao
Xin, Qi
Li, Yonghui
Luo, Ran
Yan, Yuxing
Chang, Jin
Liu, Ling
Gong, Xiaoqun
Qin, Qiong
Liu, Qingshan
Ren, Yaoyao
Zhang, Xiao-Dong
Yao, Peiyu
Chen, Ke
Mu, Xiaoyu
Li, Yuan
Li, Guo
Liu, Changlong
Long, Wei
Zhang, Jianning
Zhang, Shu
Wang, Junying
Liu, Shu-Lin
Author_xml – sequence: 1
  givenname: Ke
  surname: Chen
  fullname: Chen, Ke
  organization: Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University
– sequence: 2
  givenname: Guo
  surname: Li
  fullname: Li, Guo
  organization: Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University
– sequence: 3
  givenname: Xiaoqun
  surname: Gong
  fullname: Gong, Xiaoqun
  organization: School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University
– sequence: 4
  givenname: Qinjuan
  surname: Ren
  fullname: Ren, Qinjuan
  organization: Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University
– sequence: 5
  givenname: Junying
  surname: Wang
  fullname: Wang, Junying
  organization: Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill
– sequence: 6
  givenname: Shuang
  surname: Zhao
  fullname: Zhao, Shuang
  organization: School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University
– sequence: 7
  givenname: Ling
  surname: Liu
  fullname: Liu, Ling
  organization: Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University
– sequence: 8
  givenname: Yuxing
  surname: Yan
  fullname: Yan, Yuxing
  organization: Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University
– sequence: 9
  givenname: Qingshan
  surname: Liu
  fullname: Liu, Qingshan
  organization: Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University
– sequence: 10
  givenname: Yang
  surname: Cao
  fullname: Cao, Yang
  organization: Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University
– sequence: 11
  givenname: Yaoyao
  surname: Ren
  fullname: Ren, Yaoyao
  organization: Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital
– sequence: 12
  givenname: Qiong
  surname: Qin
  fullname: Qin, Qiong
  organization: Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital
– sequence: 13
  givenname: Qi
  surname: Xin
  fullname: Xin, Qi
  organization: Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University
– sequence: 14
  givenname: Shu-Lin
  orcidid: 0000-0002-1043-4238
  surname: Liu
  fullname: Liu, Shu-Lin
  organization: State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University
– sequence: 15
  givenname: Peiyu
  surname: Yao
  fullname: Yao, Peiyu
  organization: State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University
– sequence: 16
  givenname: Bo
  orcidid: 0000-0001-8745-2752
  surname: Zhang
  fullname: Zhang, Bo
  organization: Department of Biomedical Engineering, Southern University of Science and Technology
– sequence: 17
  givenname: Jingkai
  surname: Yang
  fullname: Yang, Jingkai
  organization: Department of Biomedical Engineering, Southern University of Science and Technology
– sequence: 18
  givenname: Ruoli
  surname: Zhao
  fullname: Zhao, Ruoli
  organization: Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University
– sequence: 19
  givenname: Yuan
  surname: Li
  fullname: Li, Yuan
  organization: Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University
– sequence: 20
  givenname: Ran
  surname: Luo
  fullname: Luo, Ran
  organization: School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University
– sequence: 21
  givenname: Yikai
  surname: Fu
  fullname: Fu, Yikai
  organization: Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University
– sequence: 22
  givenname: Yonghui
  orcidid: 0000-0002-6105-6484
  surname: Li
  fullname: Li, Yonghui
  organization: Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University
– sequence: 23
  givenname: Wei
  surname: Long
  fullname: Long, Wei
  organization: Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine Chinese Academy of Medical, Sciences and Peking Union Medical College
– sequence: 24
  givenname: Shu
  surname: Zhang
  fullname: Zhang, Shu
  organization: Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital
– sequence: 25
  givenname: Haitao
  surname: Dai
  fullname: Dai, Haitao
  organization: Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University
– sequence: 26
  givenname: Changlong
  surname: Liu
  fullname: Liu, Changlong
  organization: Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University
– sequence: 27
  givenname: Jianning
  orcidid: 0000-0003-3627-863X
  surname: Zhang
  fullname: Zhang, Jianning
  organization: Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital
– sequence: 28
  givenname: Jin
  surname: Chang
  fullname: Chang, Jin
  organization: School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University
– sequence: 29
  givenname: Xiaoyu
  orcidid: 0000-0002-6053-9775
  surname: Mu
  fullname: Mu, Xiaoyu
  email: muxiaoyu@tju.edu.cn
  organization: Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University
– sequence: 30
  givenname: Xiao-Dong
  orcidid: 0000-0002-7212-0138
  surname: Zhang
  fullname: Zhang, Xiao-Dong
  email: xiaodongzhang@tju.edu.cn
  organization: Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39333142$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1UREvpH2CBIrFhE_ArjrNCVcWjUiVYwNq6sZ3BI4892E6r4dfjmbTQdlFvYiXfOTr35rxERyEGi9Brgt8TzOSHzAkXfYspbzsqJG9vnqETijlpSU_Z0b37MTrLeY3rYQORnL9Ax2xgjBFOT5A6L3HjdJs1eNvkksCFxoaVC9YmF1ZNnBo4IOD9rkk2R39tTfO9NNrPudiUmyoKWdtg9nyAMifw1ePPbmPzK_R8Ap_t2e3zFP38_OnHxdf26tuXy4vzq1Z3nJTW9IPuJjuxiQLjAENHRtZrwaUQhoAYDMHUSC5HPIEhYyd6qFQPXOKeYstO0eXiayKs1Ta5DaSdiuDU4UVMKwWpOO2tEl03sJFLiw3hkolxEqzvuZC0B4pHUr0-Ll7bedxYUyerE_oHpg-_BPdLreK1IoQzMXSyOry7dUjx92xzURtXN-Q9BBvnrBghNfZQZ6ro20foOs4p1F0dqE4QzEWl3tyP9C_L3Y-sgFwAnWLOyU5KuwLFxX1C5xXBal8btdRG1dqoQ23UTZXSR9I79ydFbBHl7b4mNv2P_YTqL_cG1ak
CitedBy_id crossref_primary_10_1039_D4TB02316A
crossref_primary_10_1016_j_cej_2025_159940
crossref_primary_10_1039_D4NR04527K
crossref_primary_10_1007_s00604_025_07082_4
crossref_primary_10_1039_D4BM01371A
crossref_primary_10_1002_adma_202411967
Cites_doi 10.1002/adma.201302685
10.1038/s41467-021-22681-4
10.1021/acsnano.9b05075
10.1038/nmat1840
10.1038/s41929-019-0365-9
10.1038/s41586-021-03870-z
10.1002/smll.201703736
10.1021/cs300809j
10.1103/PhysRevB.50.17953
10.1038/s41467-019-11766-w
10.1002/adma.200800632
10.1038/s41467-022-35022-w
10.1021/jacs.5b12070
10.1021/ja5030172
10.1038/s41467-021-27194-8
10.1002/adma.202200255
10.1002/jcc.22885
10.1038/s41565-022-01179-0
10.1021/acsaem.0c02129
10.1021/acscatal.9b00601
10.1038/s41467-022-31971-4
10.1038/ncomms6788
10.1103/PhysRevLett.81.2819
10.1038/s41586-024-07090-z
10.1002/anie.201509241
10.1038/s41929-021-00609-x
10.1038/nchem.623
10.1021/acs.chemrev.8b00672
10.1007/s11244-013-0159-2
10.1038/nnano.2017.131
10.1038/natrevmats.2016.9
10.1039/c2cs35189g
10.1126/science.aah6133
10.1126/sciadv.abb2695
10.1038/s41467-022-31660-2
10.1016/0927-0256(96)00008-0
10.1038/35090585
10.1038/s41929-021-00632-y
10.1038/s41565-018-0089-z
10.1021/jacs.8b11949
10.1126/science.abm2612
10.1016/j.sintl.2020.100031
10.1038/ncomms8594
10.1038/s41929-021-00679-x
10.1038/nnano.2007.260
10.1039/C0SC00489H
10.1038/s41929-022-00756-9
10.1016/j.ultramic.2016.08.018
10.1126/science.aaf7680
10.1021/acscatal.0c00224
10.1016/j.tips.2017.11.003
10.1126/science.aad8892
10.1038/s41467-022-32411-z
10.1021/acs.nanolett.9b03782
10.1038/s41467-019-08657-5
10.1038/s41929-018-0054-0
10.1038/s41467-023-36147-2
10.1021/cm200382s
10.1038/nchem.1253
10.1021/acs.nanolett.1c00380
10.1103/PhysRevB.46.6671
10.1038/s41929-022-00846-8
10.1126/sciadv.aav5490
10.1103/PhysRevB.54.11169
10.1038/s41467-020-20275-0
10.1021/acsnano.5b03525
10.1021/ja0742784
10.1038/s41467-019-12864-5
10.1038/s41467-018-03903-8
10.1016/j.matt.2024.02.002
10.1038/s41467-022-31665-x
10.1126/sciadv.abk1210
10.1021/jacs.0c12605
10.1038/s41563-018-0133-2
10.1016/0039-6028(96)80007-0
10.1038/nnano.2012.90
10.1126/science.257.5072.897
10.1038/s41563-023-01528-x
10.1021/acsnano.6b00321
10.1021/ja306348d
10.1038/s41467-020-20027-0
10.1126/science.aab0801
10.1038/nrc2351
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-52684-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 18
ExternalDocumentID oai_doaj_org_article_65593b48e0d14836bf637746827a20b1
PMC11436958
39333142
10_1038_s41467_024_52684_w
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 11804248; 82001952
  funderid: https://doi.org/10.13039/501100001809
– fundername: STI 2030-Major Projects (2022ZD0210200) National Natural Science Foundation of Tianjin (Nos. 20JCYBJC00940 and 21JCYBJC00550)
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 82001952
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 11804248
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-d79c5fef3f2a34aa951b37c64866d1a69d102d848b0fad1b567aaa97a480720e3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:27:20 EDT 2025
Thu Aug 21 18:31:24 EDT 2025
Tue Aug 05 10:44:34 EDT 2025
Wed Aug 13 05:28:24 EDT 2025
Tue Jun 17 01:30:28 EDT 2025
Thu Apr 24 23:11:32 EDT 2025
Tue Jul 01 02:37:36 EDT 2025
Fri Feb 21 02:37:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-d79c5fef3f2a34aa951b37c64866d1a69d102d848b0fad1b567aaa97a480720e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3627-863X
0000-0002-7212-0138
0000-0001-8745-2752
0000-0002-6105-6484
0000-0002-1043-4238
0000-0002-6053-9775
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-52684-w
PMID 39333142
PQID 3110561046
PQPubID 546298
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_65593b48e0d14836bf637746827a20b1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11436958
proquest_miscellaneous_3110729102
proquest_journals_3110561046
pubmed_primary_39333142
crossref_citationtrail_10_1038_s41467_024_52684_w
crossref_primary_10_1038_s41467_024_52684_w
springer_journals_10_1038_s41467_024_52684_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-27
PublicationDateYYYYMMDD 2024-09-27
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Wu (CR31) 2022; 13
Ji (CR41) 2021; 4
Li (CR20) 2022; 5
Kresse, Furthmüller (CR80) 1996; 54
Zhang (CR34) 2019; 9
Khorshidi, Violet, Hashemi, Peterson (CR55) 2018; 1
Mukherjee, Gamler, Skrabalak, Unocic (CR63) 2020; 10
Broto (CR2) 2022; 17
Nishida (CR48) 2008; 20
Liu, Corma (CR61) 2021; 4
Poerwoprajitno (CR35) 2022; 5
Sundararaman, Narang, Jermyn, Goddard Iii, Atwater (CR57) 2014; 5
Liu (CR51) 2024; 626
Yang, Kim, Tak, Soon, Lee (CR36) 2016; 55
Bu (CR23) 2016; 354
Zhang (CR6) 2023; 14
Escudero-Escribano (CR18) 2016; 352
De Backer, van den Bos, Van den Broek, Sijbers, Van Aert (CR49) 2016; 171
Wang, Yamauchi (CR78) 2011; 23
Gao (CR45) 2007; 2
Wang (CR13) 2016; 354
Zhang, Yin, Yin (CR15) 2020; 3
Li (CR29) 2019; 2
Wang (CR68) 2021; 12
Wang (CR4) 2018; 14
Hammer, Nørskov (CR64) 1995; 343
Li (CR52) 2021; 12
Mistry, Varela, Kühl, Strasser, Cuenya (CR60) 2016; 1
He (CR10) 2021; 598
Zhang (CR73) 2016; 138
Rodriguez, Goodman (CR8) 1992; 257
Mavrikakis, Hammer, Nørskov (CR12) 1998; 81
Wang (CR39) 2022; 375
Fang (CR32) 2011; 2
Wang (CR67) 2019; 10
Zhang (CR17) 2014; 136
Cao (CR69) 2022; 34
Fan (CR83) 2012; 7
Stamenkovic (CR21) 2007; 6
Wang, Mu, He, Zhang (CR76) 2018; 39
Aslam, Chavez, Linic (CR56) 2017; 12
Huang, Chen, Gan, Wang, Dong (CR42) 2019; 5
Lu, Chen (CR84) 2012; 33
Xiong (CR26) 2019; 10
Zhang (CR40) 2022; 13
Willhammar (CR30) 2012; 4
Kresse, Furthmüller (CR79) 1996; 6
Du (CR50) 2019; 10
Ping (CR25) 2021; 21
Escudero-Escribano (CR59) 2012; 134
Koh, Strasser (CR11) 2007; 129
Chattot (CR28) 2018; 17
Zhang (CR22) 2015; 349
Vojvodic, Nørskov, Abild-Pedersen (CR62) 2014; 57
Li (CR53) 2018; 13
Mu (CR74) 2021; 7
Mu (CR5) 2019; 13
Xia (CR47) 2015; 9
Zhang (CR43) 2022; 13
Yan (CR3) 2019; 13
Rao, Aslam, Linic (CR58) 2019; 141
Fan (CR70) 2018; 9
Yang, Lee (CR37) 2013; 3
Guan (CR19) 2021; 4
Ma (CR38) 2024; 7
Strasser (CR7) 2010; 2
Atlan (CR16) 2023; 22
Hu (CR9) 2022; 13
Huang, Ren, Qu (CR71) 2019; 119
Dhanasekaran (CR65) 2001; 412
Wang (CR24) 2015; 6
Xie (CR27) 2013; 25
Xi (CR33) 2020; 20
Li (CR1) 2022; 13
Liu (CR77) 2020; 11
Liu (CR72) 2020; 6
Perdew (CR82) 1992; 46
Xi (CR46) 2021; 143
Blöchl (CR81) 1994; 50
Liu (CR54) 2021; 12
Zhang (CR75) 2016; 10
Wu (CR14) 2012; 41
Davidson, Xi, Gao, Xia (CR44) 2020; 1
Lilja, Ulmert, Vickers (CR66) 2008; 8
L Wang (52684_CR39) 2022; 375
B Hammer (52684_CR64) 1995; 343
Z Wang (52684_CR68) 2021; 12
H Wang (52684_CR76) 2018; 39
K Du (52684_CR50) 2019; 10
P Strasser (52684_CR7) 2010; 2
VR Stamenkovic (52684_CR21) 2007; 6
Y Huang (52684_CR71) 2019; 119
K Fan (52684_CR83) 2012; 7
H Li (52684_CR53) 2018; 13
JA Rodriguez (52684_CR8) 1992; 257
X Mu (52684_CR5) 2019; 13
L Bu (52684_CR23) 2016; 354
S Zhang (52684_CR43) 2022; 13
L Zhang (52684_CR22) 2015; 349
A De Backer (52684_CR49) 2016; 171
A Khorshidi (52684_CR55) 2018; 1
L Xiong (52684_CR26) 2019; 10
N Nishida (52684_CR48) 2008; 20
SM Dhanasekaran (52684_CR65) 2001; 412
M Escudero-Escribano (52684_CR59) 2012; 134
S Zhang (52684_CR17) 2014; 136
X Mu (52684_CR74) 2021; 7
R Sundararaman (52684_CR57) 2014; 5
J Wu (52684_CR14) 2012; 41
E Davidson (52684_CR44) 2020; 1
U Aslam (52684_CR56) 2017; 12
Z Li (52684_CR29) 2019; 2
H Mistry (52684_CR60) 2016; 1
T Lu (52684_CR84) 2012; 33
Q Hu (52684_CR9) 2022; 13
R Yan (52684_CR3) 2019; 13
J Zhang (52684_CR15) 2020; 3
G Kresse (52684_CR79) 1996; 6
X Wang (52684_CR24) 2015; 6
S Koh (52684_CR11) 2007; 129
JP Perdew (52684_CR82) 1992; 46
X-D Zhang (52684_CR75) 2016; 10
M Mavrikakis (52684_CR12) 1998; 81
Z Xi (52684_CR33) 2020; 20
Y Liu (52684_CR72) 2020; 6
AR Poerwoprajitno (52684_CR35) 2022; 5
H Wang (52684_CR13) 2016; 354
J Xie (52684_CR27) 2013; 25
S Yang (52684_CR36) 2016; 55
A Vojvodic (52684_CR62) 2014; 57
X Li (52684_CR52) 2021; 12
T He (52684_CR10) 2021; 598
Z Xi (52684_CR46) 2021; 143
X Xia (52684_CR47) 2015; 9
L Liu (52684_CR61) 2021; 4
L Gao (52684_CR45) 2007; 2
W Zhang (52684_CR73) 2016; 138
L Huang (52684_CR42) 2019; 5
Q Guan (52684_CR19) 2021; 4
F Li (52684_CR1) 2022; 13
B Zhang (52684_CR40) 2022; 13
R Chattot (52684_CR28) 2018; 17
J Zhang (52684_CR34) 2019; 9
X Wang (52684_CR67) 2019; 10
T Willhammar (52684_CR30) 2012; 4
G Liu (52684_CR51) 2024; 626
G Wu (52684_CR31) 2022; 13
L Wang (52684_CR78) 2011; 23
H Ma (52684_CR38) 2024; 7
J-Y Wang (52684_CR4) 2018; 14
X Ping (52684_CR25) 2021; 21
H Lilja (52684_CR66) 2008; 8
S Ji (52684_CR41) 2021; 4
X Zhang (52684_CR6) 2023; 14
M Escudero-Escribano (52684_CR18) 2016; 352
G Kresse (52684_CR80) 1996; 54
D Mukherjee (52684_CR63) 2020; 10
S Yang (52684_CR37) 2013; 3
H Liu (52684_CR54) 2021; 12
K Fan (52684_CR70) 2018; 9
P-P Fang (52684_CR32) 2011; 2
M Broto (52684_CR2) 2022; 17
P Li (52684_CR20) 2022; 5
VG Rao (52684_CR58) 2019; 141
PE Blöchl (52684_CR81) 1994; 50
S Cao (52684_CR69) 2022; 34
C Atlan (52684_CR16) 2023; 22
G Liu (52684_CR77) 2020; 11
References_xml – volume: 25
  start-page: 5807
  year: 2013
  end-page: 5813
  ident: CR27
  article-title: Defect-rich mos ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302685
– volume: 12
  year: 2021
  ident: CR52
  article-title: Ordered clustering of single atomic te vacancies in atomically thin ptte promotes hydrogen evolution catalysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22681-4
– volume: 13
  start-page: 11552
  year: 2019
  end-page: 11560
  ident: CR3
  article-title: Nanozyme-based bandage with single-atom catalysis for brain trauma
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05075
– volume: 6
  start-page: 241
  year: 2007
  end-page: 247
  ident: CR21
  article-title: Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1840
– volume: 2
  start-page: 1107
  year: 2019
  end-page: 1114
  ident: CR29
  article-title: A silver catalyst activated by stacking faults for the hydrogen evolution reaction
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0365-9
– volume: 598
  start-page: 76
  year: 2021
  end-page: 81
  ident: CR10
  article-title: Mastering the surface strain of platinum catalysts for efficient electrocatalysis
  publication-title: Nature
  doi: 10.1038/s41586-021-03870-z
– volume: 14
  year: 2018
  ident: CR4
  article-title: Hollow ptpdrh nanocubes with enhanced catalytic activities for in vivo clearance of radiation-induced ros via surface-mediated bond breaking
  publication-title: Small
  doi: 10.1002/smll.201703736
– volume: 3
  start-page: 437
  year: 2013
  end-page: 443
  ident: CR37
  article-title: Atomically dispersed platinum on gold nano-octahedra with high catalytic activity on formic acid oxidation
  publication-title: ACS Catal.
  doi: 10.1021/cs300809j
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: CR81
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 10
  year: 2019
  ident: CR26
  article-title: Octahedral gold-silver nanoframes with rich crystalline defects for efficient methanol oxidation manifesting a co-promoting effect
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11766-w
– volume: 20
  start-page: 4719
  year: 2008
  end-page: 4723
  ident: CR48
  article-title: Fluorescent gold nanoparticle superlattices
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800632
– volume: 13
  year: 2022
  ident: CR1
  article-title: A nuclease-mimetic platinum nanozyme induces concurrent DNA platination and oxidative cleavage to overcome cancer drug resistance
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35022-w
– volume: 138
  start-page: 5860
  year: 2016
  end-page: 5865
  ident: CR73
  article-title: Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b12070
– volume: 136
  start-page: 7734
  year: 2014
  end-page: 7739
  ident: CR17
  article-title: Tuning nanoparticle structure and surface strain for catalysis optimization
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5030172
– volume: 12
  year: 2021
  ident: CR68
  article-title: Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27194-8
– volume: 34
  start-page: 2200255
  year: 2022
  ident: CR69
  article-title: A library of ros-catalytic metalloenzyme mimics with atomic metal centers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202200255
– volume: 33
  start-page: 580
  year: 2012
  end-page: 592
  ident: CR84
  article-title: Multiwfn: a multifunctional wavefunction analyzer
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22885
– volume: 17
  start-page: 1120
  year: 2022
  end-page: 1126
  ident: CR2
  article-title: Nanozyme-catalysed crispr assay for preamplification-free detection of non-coding rnas
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01179-0
– volume: 3
  start-page: 11956
  year: 2020
  end-page: 11963
  ident: CR15
  article-title: Strain engineering to enhance the oxidation reduction reaction performance of atomic-layer Pt on nanoporous gold
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c02129
– volume: 9
  start-page: 5998
  year: 2019
  end-page: 6005
  ident: CR34
  article-title: Tin-assisted fully exposed platinum clusters stabilized on defect-rich graphene for dehydrogenation reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00601
– volume: 13
  year: 2022
  ident: CR31
  article-title: In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31971-4
– volume: 5
  year: 2014
  ident: CR57
  article-title: Theoretical predictions for hot-carrier generation from surface plasmon decay
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6788
– volume: 81
  start-page: 2819
  year: 1998
  end-page: 2822
  ident: CR12
  article-title: Effect of strain on the reactivity of metal surfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.2819
– volume: 626
  start-page: 1005
  year: 2024
  end-page: 1010
  ident: CR51
  article-title: Site-specific reactivity of stepped Pt surfaces driven by stress release
  publication-title: Nature
  doi: 10.1038/s41586-024-07090-z
– volume: 55
  start-page: 2058
  year: 2016
  end-page: 2062
  ident: CR36
  article-title: Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201509241
– volume: 4
  start-page: 407
  year: 2021
  end-page: 417
  ident: CR41
  article-title: Matching the kinetics of natural enzymes with a single-atom iron nanozyme
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00609-x
– volume: 2
  start-page: 454
  year: 2010
  end-page: 460
  ident: CR7
  article-title: Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.623
– volume: 119
  start-page: 4357
  year: 2019
  end-page: 4412
  ident: CR71
  article-title: Nanozymes: classification, catalytic mechanisms, activity regulation, and applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00672
– volume: 57
  start-page: 25
  year: 2014
  end-page: 32
  ident: CR62
  article-title: Electronic structure effects in transition metal surface chemistry
  publication-title: Top. Catal.
  doi: 10.1007/s11244-013-0159-2
– volume: 12
  start-page: 1000
  year: 2017
  end-page: 1005
  ident: CR56
  article-title: Controlling energy flow in multimetallic nanostructures for plasmonic catalysis
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.131
– volume: 1
  start-page: 16009
  year: 2016
  ident: CR60
  article-title: Nanostructured electrocatalysts with tunable activity and selectivity
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.9
– volume: 41
  start-page: 8066
  year: 2012
  end-page: 8074
  ident: CR14
  article-title: Surface lattice-engineered bimetallic nanoparticles and their catalytic properties
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35189g
– volume: 13
  start-page: 1870
  year: 2019
  end-page: 1884
  ident: CR5
  article-title: Redox trimetallic nanozyme with neutral environment preference for brain injury
  publication-title: ACS Nano
– volume: 354
  start-page: 1410
  year: 2016
  end-page: 1414
  ident: CR23
  article-title: Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis
  publication-title: Science
  doi: 10.1126/science.aah6133
– volume: 6
  start-page: eabb2695
  year: 2020
  ident: CR72
  article-title: Integrated cascade nanozyme catalyzes in vivo ros scavenging for anti-inflammatory therapy
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb2695
– volume: 13
  year: 2022
  ident: CR9
  article-title: Subnanometric Ru clusters with upshifted d band center improve performance for alkaline hydrogen evolution reaction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31660-2
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR79
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 412
  start-page: 822
  year: 2001
  end-page: 826
  ident: CR65
  article-title: Delineation of prognostic biomarkers in prostate cancer
  publication-title: Nature
  doi: 10.1038/35090585
– volume: 4
  start-page: 453
  year: 2021
  end-page: 456
  ident: CR61
  article-title: Identification of the active sites in supported subnanometric metal catalysts
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00632-y
– volume: 13
  start-page: 411
  year: 2018
  end-page: 417
  ident: CR53
  article-title: Synergetic interaction between neighbouring platinum monomers in CO hydrogenation
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0089-z
– volume: 141
  start-page: 643
  year: 2019
  end-page: 647
  ident: CR58
  article-title: Chemical requirement for extracting energetic charge carriers from plasmonic metal nanoparticles to perform electron-transfer reactions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11949
– volume: 375
  start-page: 1261
  year: 2022
  end-page: 1265
  ident: CR39
  article-title: Tracking the sliding of grain boundaries at the atomic scale
  publication-title: Science
  doi: 10.1126/science.abm2612
– volume: 1
  start-page: 100031
  year: 2020
  ident: CR44
  article-title: Ultrafast and sensitive colorimetric detection of ascorbic acid with Pd-Pt core-shell nanostructure as peroxidase mimic
  publication-title: Sens. Int.
  doi: 10.1016/j.sintl.2020.100031
– volume: 6
  year: 2015
  ident: CR24
  article-title: Palladium–platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8594
– volume: 4
  start-page: 840
  year: 2021
  end-page: 849
  ident: CR19
  article-title: Bimetallic monolayer catalyst breaks the activity–selectivity trade-off on metal particle size for efficient chemoselective hydrogenations
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00679-x
– volume: 2
  start-page: 577
  year: 2007
  end-page: 583
  ident: CR45
  article-title: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.260
– volume: 2
  start-page: 531
  year: 2011
  end-page: 539
  ident: CR32
  article-title: Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity
  publication-title: Chem. Sci.
  doi: 10.1039/C0SC00489H
– volume: 5
  start-page: 231
  year: 2022
  end-page: 237
  ident: CR35
  article-title: A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for co-resilient methanol oxidation
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00756-9
– volume: 171
  start-page: 104
  year: 2016
  end-page: 116
  ident: CR49
  article-title: StatSTEM: an efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2016.08.018
– volume: 354
  start-page: 1031
  year: 2016
  end-page: 1036
  ident: CR13
  article-title: Direct and continuous strain control of catalysts with tunable battery electrode materials
  publication-title: Science
  doi: 10.1126/science.aaf7680
– volume: 10
  start-page: 5529
  year: 2020
  end-page: 5541
  ident: CR63
  article-title: Lattice strain measurement of core@shell electrocatalysts with 4d scanning transmission electron microscopy nanobeam electron diffraction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00224
– volume: 39
  start-page: 24
  year: 2018
  end-page: 48
  ident: CR76
  article-title: Cancer radiosensitizers
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2017.11.003
– volume: 352
  start-page: 73
  year: 2016
  end-page: 76
  ident: CR18
  article-title: Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction
  publication-title: Science
  doi: 10.1126/science.aad8892
– volume: 13
  year: 2022
  ident: CR43
  article-title: Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32411-z
– volume: 20
  start-page: 272
  year: 2020
  end-page: 277
  ident: CR33
  article-title: Strain effect in palladium nanostructures as nanozymes
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b03782
– volume: 10
  year: 2019
  ident: CR67
  article-title: Eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08657-5
– volume: 1
  start-page: 263
  year: 2018
  end-page: 268
  ident: CR55
  article-title: How strain can break the scaling relations of catalysis
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0054-0
– volume: 14
  year: 2023
  ident: CR6
  article-title: Conjugated dual size effect of core-shell particles synergizes bimetallic catalysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-36147-2
– volume: 23
  start-page: 2457
  year: 2011
  end-page: 2465
  ident: CR78
  article-title: Strategic synthesis of trimetallic Au@Pd@Pt core−shell nanoparticles from poly(vinylpyrrolidone)-based aqueous solution toward highly active electrocatalysts
  publication-title: Chem. Mater.
  doi: 10.1021/cm200382s
– volume: 4
  start-page: 188
  year: 2012
  end-page: 194
  ident: CR30
  article-title: Structure and catalytic properties of the most complex intergrown zeolite itq-39 determined by electron crystallography
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1253
– volume: 21
  start-page: 3857
  year: 2021
  end-page: 3863
  ident: CR25
  article-title: Activating a two-dimensional PtSe basal plane for the hydrogen evolution reaction through the simultaneous generation of atomic vacancies and Pt clusters
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c00380
– volume: 46
  start-page: 6671
  year: 1992
  end-page: 6687
  ident: CR82
  article-title: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.6671
– volume: 5
  start-page: 900
  year: 2022
  end-page: 911
  ident: CR20
  article-title: Hydrogen bond network connectivity in the electric double layer dominates the kinetic ph effect in hydrogen electrocatalysis on Pt
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00846-8
– volume: 5
  start-page: eaav5490
  year: 2019
  ident: CR42
  article-title: Single-atom nanozymes
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav5490
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR80
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 12
  year: 2021
  ident: CR54
  article-title: Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20275-0
– volume: 9
  start-page: 9994
  year: 2015
  end-page: 10004
  ident: CR47
  article-title: Pd–Ir core–shell nanocubes: a type of highly efficient and versatile peroxidase mimic
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03525
– volume: 129
  start-page: 12624
  year: 2007
  end-page: 12625
  ident: CR11
  article-title: Electrocatalysis on bimetallic surfaces: Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0742784
– volume: 10
  year: 2019
  ident: CR50
  article-title: Manipulating topological transformations of polar structures through real-time observation of the dynamic polarization evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12864-5
– volume: 9
  year: 2018
  ident: CR70
  article-title: In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03903-8
– volume: 7
  start-page: 1660
  year: 2024
  end-page: 1676
  ident: CR38
  article-title: Atomically precise ag clusters for intelligent nir-ii imaging
  publication-title: Matter
  doi: 10.1016/j.matt.2024.02.002
– volume: 13
  year: 2022
  ident: CR40
  article-title: Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31665-x
– volume: 7
  start-page: eabk1210
  year: 2021
  ident: CR74
  article-title: An oligomeric semiconducting nanozyme with ultrafast electron transfers alleviates acute brain injury
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abk1210
– volume: 143
  start-page: 2660
  year: 2021
  end-page: 2664
  ident: CR46
  article-title: Nickel–platinum nanoparticles as peroxidase mimics with a record high catalytic efficiency
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c12605
– volume: 17
  start-page: 827
  year: 2018
  end-page: 833
  ident: CR28
  article-title: Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0133-2
– volume: 343
  start-page: 211
  year: 1995
  end-page: 220
  ident: CR64
  article-title: Electronic factors determining the reactivity of metal surfaces
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(96)80007-0
– volume: 7
  start-page: 459
  year: 2012
  end-page: 464
  ident: CR83
  article-title: Magnetoferritin nanoparticles for targeting and visualizing tumour tissues
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.90
– volume: 257
  start-page: 897
  year: 1992
  end-page: 903
  ident: CR8
  article-title: The nature of the metal-metal bond in bimetallic surfaces
  publication-title: Science
  doi: 10.1126/science.257.5072.897
– volume: 22
  start-page: 754
  year: 2023
  end-page: 761
  ident: CR16
  article-title: Imaging the strain evolution of a platinum nanoparticle under electrochemical control
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-023-01528-x
– volume: 10
  start-page: 4511
  year: 2016
  end-page: 4519
  ident: CR75
  article-title: Highly catalytic nanodots with renal clearance for radiation protection
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b00321
– volume: 134
  start-page: 16476
  year: 2012
  end-page: 16479
  ident: CR59
  article-title: Pt Gd as a highly active and stable catalyst for oxygen electroreduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja306348d
– volume: 11
  year: 2020
  ident: CR77
  article-title: High-throughput preparation of radioprotective polymers via Hantzsch’s reaction for in vivo x-ray damage determination
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20027-0
– volume: 349
  start-page: 412
  year: 2015
  end-page: 416
  ident: CR22
  article-title: Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets
  publication-title: Science
  doi: 10.1126/science.aab0801
– volume: 8
  start-page: 268
  year: 2008
  end-page: 278
  ident: CR66
  article-title: Prostate-specific antigen and prostate cancer: prediction, detection and monitoring
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2351
– volume: 41
  start-page: 8066
  year: 2012
  ident: 52684_CR14
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35189g
– volume: 136
  start-page: 7734
  year: 2014
  ident: 52684_CR17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5030172
– volume: 1
  start-page: 16009
  year: 2016
  ident: 52684_CR60
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.9
– volume: 14
  year: 2018
  ident: 52684_CR4
  publication-title: Small
  doi: 10.1002/smll.201703736
– volume: 171
  start-page: 104
  year: 2016
  ident: 52684_CR49
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2016.08.018
– volume: 17
  start-page: 1120
  year: 2022
  ident: 52684_CR2
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01179-0
– volume: 412
  start-page: 822
  year: 2001
  ident: 52684_CR65
  publication-title: Nature
  doi: 10.1038/35090585
– volume: 4
  start-page: 453
  year: 2021
  ident: 52684_CR61
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00632-y
– volume: 81
  start-page: 2819
  year: 1998
  ident: 52684_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.2819
– volume: 5
  start-page: 231
  year: 2022
  ident: 52684_CR35
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00756-9
– volume: 21
  start-page: 3857
  year: 2021
  ident: 52684_CR25
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c00380
– volume: 50
  start-page: 17953
  year: 1994
  ident: 52684_CR81
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 13
  start-page: 1870
  year: 2019
  ident: 52684_CR5
  publication-title: ACS Nano
– volume: 12
  year: 2021
  ident: 52684_CR52
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22681-4
– volume: 34
  start-page: 2200255
  year: 2022
  ident: 52684_CR69
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202200255
– volume: 10
  start-page: 5529
  year: 2020
  ident: 52684_CR63
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00224
– volume: 6
  start-page: eabb2695
  year: 2020
  ident: 52684_CR72
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb2695
– volume: 6
  start-page: 15
  year: 1996
  ident: 52684_CR79
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 57
  start-page: 25
  year: 2014
  ident: 52684_CR62
  publication-title: Top. Catal.
  doi: 10.1007/s11244-013-0159-2
– volume: 39
  start-page: 24
  year: 2018
  ident: 52684_CR76
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2017.11.003
– volume: 5
  start-page: 900
  year: 2022
  ident: 52684_CR20
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00846-8
– volume: 626
  start-page: 1005
  year: 2024
  ident: 52684_CR51
  publication-title: Nature
  doi: 10.1038/s41586-024-07090-z
– volume: 598
  start-page: 76
  year: 2021
  ident: 52684_CR10
  publication-title: Nature
  doi: 10.1038/s41586-021-03870-z
– volume: 13
  start-page: 411
  year: 2018
  ident: 52684_CR53
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0089-z
– volume: 54
  start-page: 11169
  year: 1996
  ident: 52684_CR80
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 33
  start-page: 580
  year: 2012
  ident: 52684_CR84
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22885
– volume: 20
  start-page: 272
  year: 2020
  ident: 52684_CR33
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b03782
– volume: 2
  start-page: 531
  year: 2011
  ident: 52684_CR32
  publication-title: Chem. Sci.
  doi: 10.1039/C0SC00489H
– volume: 12
  year: 2021
  ident: 52684_CR68
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27194-8
– volume: 129
  start-page: 12624
  year: 2007
  ident: 52684_CR11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0742784
– volume: 349
  start-page: 412
  year: 2015
  ident: 52684_CR22
  publication-title: Science
  doi: 10.1126/science.aab0801
– volume: 2
  start-page: 577
  year: 2007
  ident: 52684_CR45
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.260
– volume: 12
  start-page: 1000
  year: 2017
  ident: 52684_CR56
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.131
– volume: 7
  start-page: eabk1210
  year: 2021
  ident: 52684_CR74
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abk1210
– volume: 1
  start-page: 100031
  year: 2020
  ident: 52684_CR44
  publication-title: Sens. Int.
  doi: 10.1016/j.sintl.2020.100031
– volume: 3
  start-page: 11956
  year: 2020
  ident: 52684_CR15
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c02129
– volume: 2
  start-page: 1107
  year: 2019
  ident: 52684_CR29
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0365-9
– volume: 354
  start-page: 1410
  year: 2016
  ident: 52684_CR23
  publication-title: Science
  doi: 10.1126/science.aah6133
– volume: 13
  year: 2022
  ident: 52684_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31971-4
– volume: 138
  start-page: 5860
  year: 2016
  ident: 52684_CR73
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b12070
– volume: 6
  start-page: 241
  year: 2007
  ident: 52684_CR21
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1840
– volume: 13
  year: 2022
  ident: 52684_CR43
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32411-z
– volume: 4
  start-page: 407
  year: 2021
  ident: 52684_CR41
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00609-x
– volume: 11
  year: 2020
  ident: 52684_CR77
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20027-0
– volume: 46
  start-page: 6671
  year: 1992
  ident: 52684_CR82
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.6671
– volume: 375
  start-page: 1261
  year: 2022
  ident: 52684_CR39
  publication-title: Science
  doi: 10.1126/science.abm2612
– volume: 5
  start-page: eaav5490
  year: 2019
  ident: 52684_CR42
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav5490
– volume: 352
  start-page: 73
  year: 2016
  ident: 52684_CR18
  publication-title: Science
  doi: 10.1126/science.aad8892
– volume: 10
  year: 2019
  ident: 52684_CR67
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08657-5
– volume: 17
  start-page: 827
  year: 2018
  ident: 52684_CR28
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0133-2
– volume: 143
  start-page: 2660
  year: 2021
  ident: 52684_CR46
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c12605
– volume: 20
  start-page: 4719
  year: 2008
  ident: 52684_CR48
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800632
– volume: 1
  start-page: 263
  year: 2018
  ident: 52684_CR55
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0054-0
– volume: 8
  start-page: 268
  year: 2008
  ident: 52684_CR66
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2351
– volume: 3
  start-page: 437
  year: 2013
  ident: 52684_CR37
  publication-title: ACS Catal.
  doi: 10.1021/cs300809j
– volume: 22
  start-page: 754
  year: 2023
  ident: 52684_CR16
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-023-01528-x
– volume: 12
  year: 2021
  ident: 52684_CR54
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20275-0
– volume: 4
  start-page: 840
  year: 2021
  ident: 52684_CR19
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00679-x
– volume: 6
  year: 2015
  ident: 52684_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8594
– volume: 7
  start-page: 1660
  year: 2024
  ident: 52684_CR38
  publication-title: Matter
  doi: 10.1016/j.matt.2024.02.002
– volume: 354
  start-page: 1031
  year: 2016
  ident: 52684_CR13
  publication-title: Science
  doi: 10.1126/science.aaf7680
– volume: 13
  year: 2022
  ident: 52684_CR1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35022-w
– volume: 7
  start-page: 459
  year: 2012
  ident: 52684_CR83
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.90
– volume: 10
  year: 2019
  ident: 52684_CR50
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12864-5
– volume: 2
  start-page: 454
  year: 2010
  ident: 52684_CR7
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.623
– volume: 25
  start-page: 5807
  year: 2013
  ident: 52684_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302685
– volume: 257
  start-page: 897
  year: 1992
  ident: 52684_CR8
  publication-title: Science
  doi: 10.1126/science.257.5072.897
– volume: 4
  start-page: 188
  year: 2012
  ident: 52684_CR30
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1253
– volume: 9
  year: 2018
  ident: 52684_CR70
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03903-8
– volume: 134
  start-page: 16476
  year: 2012
  ident: 52684_CR59
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja306348d
– volume: 343
  start-page: 211
  year: 1995
  ident: 52684_CR64
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(96)80007-0
– volume: 119
  start-page: 4357
  year: 2019
  ident: 52684_CR71
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00672
– volume: 55
  start-page: 2058
  year: 2016
  ident: 52684_CR36
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201509241
– volume: 5
  year: 2014
  ident: 52684_CR57
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6788
– volume: 23
  start-page: 2457
  year: 2011
  ident: 52684_CR78
  publication-title: Chem. Mater.
  doi: 10.1021/cm200382s
– volume: 13
  year: 2022
  ident: 52684_CR40
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31665-x
– volume: 10
  start-page: 4511
  year: 2016
  ident: 52684_CR75
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b00321
– volume: 13
  year: 2022
  ident: 52684_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31660-2
– volume: 13
  start-page: 11552
  year: 2019
  ident: 52684_CR3
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05075
– volume: 10
  year: 2019
  ident: 52684_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11766-w
– volume: 141
  start-page: 643
  year: 2019
  ident: 52684_CR58
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11949
– volume: 9
  start-page: 5998
  year: 2019
  ident: 52684_CR34
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00601
– volume: 14
  year: 2023
  ident: 52684_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-36147-2
– volume: 9
  start-page: 9994
  year: 2015
  ident: 52684_CR47
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03525
SSID ssj0000391844
Score 2.5187812
Snippet Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to...
Abstract Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8346
SubjectTerms 119/118
631/61/350/59
631/61/54/990
639/638/77/603
64
Atomic structure
Biocatalysis
Biocatalysts
Catalase
Catalase - chemistry
Catalase - metabolism
Catalysis
Catalytic activity
Clusters
Current carriers
Density Functional Theory
Electronic structure
Enzymes
Gold
Gold - chemistry
Horseradish peroxidase
Horseradish Peroxidase - chemistry
Horseradish Peroxidase - metabolism
Humanities and Social Sciences
Humans
Laminates
Metal Nanoparticles - chemistry
multidisciplinary
Oxidative stress
Palladium
Palladium - chemistry
Peroxidase
Platinum
Platinum - chemistry
Scale (corrosion)
Science
Science (multidisciplinary)
Superoxide dismutase
Superoxide Dismutase - chemistry
Superoxide Dismutase - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqSki9IPoAAi0yUm9gNcn4lWNBVBUSqIdW6s2yE1sghWxFslTbX8_YyW67tIUL13iiTGbGnm809mdCDmttQ4N-ZkEgfONWAXOq0sxapYpGRL6YeN75y1d5esE_X4rLO1d9xT1hIz3waLgjiZAXHNc-bxC5g3RBAkIWqUtly9ylwgdz3p1iKq3BUGHpwqdTMjnoo56nNQFTEksMJ-x6LRMlwv6HUOb9zZJ_dExTIjp5Rp5OCJIej5pvkw3f7ZAn452Si11ijod40Jj1aHxP-3QFBPW3rIN0FqhNIrZtFxSr7Vn7yzf0bKB1O4-0CT0dYgJDTWJeo4n6Ez_ou5vFD9_vkYuTT-cfT9l0iwKrBS8Ghp6IO8oChNICtxYhlQNVS66lbAorqwYxRqO5dnmwTeGEVBallI2Hzcvcw3Oy2c06_5JQqJ2VQViIlDPCIbTivC68FCH3BQSfkWJpUVNPFOPxN1uTWt2gzegFg14wyQvmOiPvVu9cjQQbf5X-EB21kozk2OkBhoyZQsb8K2Qysr90s5lmbG8AcVDEklxm5O1qGOdabKDYzs_mowwWI2ivjLwYo2KlCVQAUHAc0Wvxsqbq-kj3_Vvi88aSFGQldEbeL0PrVq_HbfHqf9jiNdkq45yIfTa1TzaHn3N_gDBrcG_SjPoNNAIhsQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlbj2LG9J1QQVYUE4kClvVl2YgNSmpQmS7X99cw42ayWR6_xRHH8jT0zHvsbQl5VxsUacGaxBPdNOi2Y1wvDnNOa1yXyxeB950-f1cmp_Lgsl9OGWz8dq9ysiWmhrrsK98gPBcca8ZiRfHv-k2HVKMyuTiU0bpJbSF2GR7r0Us97LMh-bqSc7srkwhz2Mq0MYJhY4jlhlzv2KNH2_8vX_PvI5B9502SOju-Ru5MfSY9G4O-TG6F9QG6PlSXXD4k9GvC6MesBgkD7VAiChi33IO0idUnENc2aQszdNb9CTb8MtGpWSJ7Q0wHNGPQErRtNBKDwwdBerc9C_4icHn_4-v6ETbUUWFVKPjDAA8-VRRELJ6Rz4Fh5oSsljVI1d2pRg6dRG2l8Hl3Nfam0Aynt8Mp5kQfxmOy1XRueEioq71QsnUDimdKDgyVlxYMqYx64iCEjfDOitpqIxvE3G5sS3sLYEQULKNiEgr3MyOv5nfORZuNa6XcI1CyJFNnpQXfxzU4zziqIlYSXJuQ1hHxC-agE-LrKFNoVuecZOdjAbKd529utlmXk5dwMMw7TKK4N3WqUgZAExisjT0atmHsiFkIILqHF7OjLTld3W9of3xOrNwSmQoEOZ-TNRrW2_fr_WOxf_xvPyJ0CtR3zaPqA7A0Xq_Ac3KjBv0hz5TeeuxrQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEB_WFcGL-G3XVSJ402DbSdO84_pwWQTFgwt7C0mbqFBb2fa5PP_6naQfy9NV8NpM6XRm0vlNk_kF4GWljK_Jz9wXBN-EKZHbcqW4MWWZ1UXgiwn9zh8-ypNT8f6sONuDfO6FiZv2I6Vl_EzPu8Pe9CJOacooPBKU8IsbcDNQt4eoXsv18l8lMJ4rIab-mBTVNbfu5KBI1X8dvvxzm-Rva6UxBR3fhTsTdmRHo7b3YM-19-HWeJrk9gHooyG0GPOezO5YHw9_YO6Kb5B1npkoYppmy6jO7pqfrmafBlY1m0CY0LMhpC7SJGQ0Fi1ED3Ttr-131z-E0-N3n9cnfDo_gVeFyAZOPgh7yTz63KAwhsCUxbKSQklZZ0auakIXtRLKpt7UmS1kaUiqNKHNPE8dPoL9tmvdE2BYWSN9YTCQzRSWQJUQVeZk4VOXoXcJZLNFdTWRi4fXbHRc5EalRy9o8oKOXtAXCbxa7vkxUmv8U_ptcNQiGWix44Xu_IuewkRLqo_QCuXSmso8lNZLJHwrVV6aPLVZAoezm_U0V3uNhIACihQygRfLMM2ysHRiWtdtRhkqQ8heCTweo2LRBFeImAkaUTvxsqPq7kj77Wtk8qZiFOWqUAm8nkPrSq-_2-Lg_8Sfwu08RH9YSysPYX8437hnBKUG-zzOnUsXohlG
  priority: 102
  providerName: Springer Nature
Title Atomic-scale strain engineering of atomically resolved Pt clusters transcending natural enzymes
URI https://link.springer.com/article/10.1038/s41467-024-52684-w
https://www.ncbi.nlm.nih.gov/pubmed/39333142
https://www.proquest.com/docview/3110561046
https://www.proquest.com/docview/3110729102
https://pubmed.ncbi.nlm.nih.gov/PMC11436958
https://doaj.org/article/65593b48e0d14836bf637746827a20b1
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ6C9IL4XGJWReINAEju2-4BQV61MlTZNQKW-WU7iDKSQjCZllL-es5N0KhQeeEmk5KI4vrvc7-Lc7wBepFLnGerZz2OEb0wL6idiKH2thQiz2PLF2Hrns3N-OmPTeTzfgb7dUTeB9dbUzvaTmi2K1z--rd6hw79tS8blm5o5d8do4zvyEv96F_YxMgnrqGcd3HdvZjrEhIZ1tTPbLz2A2xSTfBqyaCNUOUb_bTD0z78pf1tSdZFqchfudBCTjFqbuAc7prwPt9qmk6sHoEaNrUT2a9SOIbXrEUHMDS0hqXKinYguihXBdLwqvpuMXDQkLZaWV6EmjY1wOBIb-IjjBsUbmvLn6qupH8JscvJpfOp3bRb8NGZh46Oq7C9nOc0jTZnWiLkSKlLOJOdZqPkwQxCSSSaTINdZmMRcaJQS2lajR4Ghj2CvrEpzCISmieZ5rKnlpIkTxF6MpaHhcR6YkObGg7CfUZV2HOT2MQvl1sKpVK1CFCpEOYWoaw9erq-5ahk4_il9bBW1lrTs2e5AtbhUnTMqjmkUTZg0QYbZIOVJzinCYC4joaMgCT046tWseotUFIGSBZuMe_B8fRqd0a6w6NJUy1YGsxWcLw8et1axHklvVR7IDXvZGOrmmfLLZ0f4jTkr5cNYevCqN62bcf19Lp78_52ewkFkncIuv4kj2GsWS_MM0VeTDGBXzAVu5eT9APZHo-nHKe6PT84vPuDRMR8P3HeNgXO9X1iCMqk
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKEYIL4k2gwCDBCaImmcnM7AGh8qi29CEOrbS3YZJMAGlJSpNltfwofiP2JNnV8uit1x3vrjO2x3Y8_gzwLNe2LFDOYZli-Cas4mGmRjq0Vqm4SAkvhvqdD4_k-ER8mKSTDfg19MLQtcrhTPQHdVHn9I58m8c0I54qkq9Pv4c0NYqqq8MIjU4t9t1ijilb82rvHcr3eZLsvj9-Ow77qQJhnoq4DZEzumFV8jKxXFiLIUbGVS6FlrKIrRwV6HMLLXQWlbaIs1Qqi1TKUvN1EjmOv3sJLqPjjcii1EQt3-kQ2roWou_NibjeboQ_idARhh5XJZyv-T8_JuBfse3fVzT_qNN697d7A673cSvb6RTtJmy46hZc6SZZLm6D2WmpvTlsUOSONX7wBHMrrENWl8x6EjudLhjm-PX0hyvYx5bl0xmBNTSsJbeJnJA3ZR5wFP_QVT8X31xzB04uZJfvwmZVV-4-MJ5nVpap5QR0k2YY0AmRx06mZeRiXroA4mFHTd4Dm9NjTo0vsHNtOikYlILxUjDzAF4sv3PawXqcS_2GBLWkJEhu_0F99tn0Fm4k5mY8E9pFBaaYXGal5BhbS50om0RZHMDWIGbTnxONWWl1AE-Xy2jhVLaxlatnHQ2mQLhfAdzrtGLJCR9xzmOBK3pNX9ZYXV-pvn7xKOKYCHM5SnUALwfVWvH1_714cP5jPIGr4-PDA3Owd7T_EK4lpPlUw1NbsNmezdwjDOHa7LG3GwafLtpQfwPMSFfF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIgXxOcIDDASPEG0OHZs9wGhwag2BtMemNQ34yQ2IJVkLClV-dP467hzklblY297ra_txXfnu8v5fkfI00JbX4KcY59B-Cas4nGuRjq2VilWZogXg_3OH47k_ol4N8kmG-TX0AuD1yqHMzEc1GVd4DvyHc5wRnyoSPr-WsTx3vjV6fcYJ0hhpXUYp9GpyKFbzCF9a14e7IGsn6Xp-O3HN_txP2EgLjLB2hi4xNtWnvvUcmEthBs5V4UUWsqSWTkqwf-WWug88bZkeSaVBSplsRE7TRyH371ELiueMbQxNVHL9zuIvK6F6Pt0Eq53GhFOJXCKccBYiedrvjCMDPhXnPv3dc0_arbBFY5vkOt9DEt3O6W7STZcdYtc6aZaLm4Ts9tiq3PcgPgdbcIQCupWuIe09tQGEjudLijk-_X0hyvpcUuL6QyBGxraogsFTtCz0gA-Cn_oqp-Lb665Q04uZJfvks2qrtw9QnmRW-kzyxH0JsshuBOiYE5mPnGMexcRNuyoKXqQc3zMqQnFdq5NJwUDUjBBCmYekefL75x2EB_nUr9GQS0pEZ47fFCffTa9tRsJeRrPhXZJCekml7mXHOJsqVNl0yRnEdkexGz6M6MxKw2PyJPlMlg7lnBs5epZRwPpEOxXRLY6rVhywkeccyZgRa_pyxqr6yvV1y8BURySYi5HmY7Ii0G1Vnz9fy_un_8Yj8lVMFHz_uDo8AG5lqLiYzlPbZPN9mzmHkI01-aPgtlQ8umi7fQ33KNb-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomic-scale+strain+engineering+of+atomically+resolved+Pt+clusters+transcending+natural+enzymes&rft.jtitle=Nature+communications&rft.au=Chen%2C+Ke&rft.au=Li%2C+Guo&rft.au=Gong%2C+Xiaoqun&rft.au=Ren%2C+Qinjuan&rft.date=2024-09-27&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft_id=info:doi/10.1038%2Fs41467-024-52684-w&rft_id=info%3Apmid%2F39333142&rft.externalDocID=PMC11436958
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon