Atomic-scale strain engineering of atomically resolved Pt clusters transcending natural enzymes
Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt 1 ), several Pt atoms (Pt n...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 8346 - 18 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.09.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt
1
), several Pt atoms (Pt
n
) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the
d
-band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency (
K
cat
/
K
m
) of 1.50 × 10
9
mM
−1
min
−1
, about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder.
Strain engineering is promising for improving catalytic capability of biocatalysts, but it is challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, the authors report the biocatalysts with atomically-resolved Pt clusters laminated on PdAu nanocrystals and show that the tensile strains contribute to the enzyme-like activities greater than that of natural enzymes. |
---|---|
AbstractList | Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt1), several Pt atoms (Ptn) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the d-band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency (Kcat/Km) of 1.50 × 109 mM−1 min−1, about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder.Strain engineering is promising for improving catalytic capability of biocatalysts, but it is challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, the authors report the biocatalysts with atomically-resolved Pt clusters laminated on PdAu nanocrystals and show that the tensile strains contribute to the enzyme-like activities greater than that of natural enzymes. Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt1), several Pt atoms (Ptn) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the d-band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency (Kcat/Km) of 1.50 × 109 mM-1 min-1, about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder.Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt1), several Pt atoms (Ptn) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the d-band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency (Kcat/Km) of 1.50 × 109 mM-1 min-1, about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder. Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt 1 ), several Pt atoms (Pt n ) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the d -band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency ( K cat / K m ) of 1.50 × 10 9 mM −1 min −1 , about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder. Strain engineering is promising for improving catalytic capability of biocatalysts, but it is challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, the authors report the biocatalysts with atomically-resolved Pt clusters laminated on PdAu nanocrystals and show that the tensile strains contribute to the enzyme-like activities greater than that of natural enzymes. Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt ), several Pt atoms (Pt ) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the d-band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency (K /K ) of 1.50 × 10 mM min , about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder. Abstract Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt1), several Pt atoms (Ptn) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the d-band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency (K cat/K m) of 1.50 × 109 mM−1 min−1, about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder. |
ArticleNumber | 8346 |
Author | Zhao, Shuang Ren, Qinjuan Fu, Yikai Yang, Jingkai Zhao, Ruoli Cao, Yang Zhang, Bo Dai, Haitao Xin, Qi Li, Yonghui Luo, Ran Yan, Yuxing Chang, Jin Liu, Ling Gong, Xiaoqun Qin, Qiong Liu, Qingshan Ren, Yaoyao Zhang, Xiao-Dong Yao, Peiyu Chen, Ke Mu, Xiaoyu Li, Yuan Li, Guo Liu, Changlong Long, Wei Zhang, Jianning Zhang, Shu Wang, Junying Liu, Shu-Lin |
Author_xml | – sequence: 1 givenname: Ke surname: Chen fullname: Chen, Ke organization: Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University – sequence: 2 givenname: Guo surname: Li fullname: Li, Guo organization: Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University – sequence: 3 givenname: Xiaoqun surname: Gong fullname: Gong, Xiaoqun organization: School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University – sequence: 4 givenname: Qinjuan surname: Ren fullname: Ren, Qinjuan organization: Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University – sequence: 5 givenname: Junying surname: Wang fullname: Wang, Junying organization: Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill – sequence: 6 givenname: Shuang surname: Zhao fullname: Zhao, Shuang organization: School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University – sequence: 7 givenname: Ling surname: Liu fullname: Liu, Ling organization: Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University – sequence: 8 givenname: Yuxing surname: Yan fullname: Yan, Yuxing organization: Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University – sequence: 9 givenname: Qingshan surname: Liu fullname: Liu, Qingshan organization: Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University – sequence: 10 givenname: Yang surname: Cao fullname: Cao, Yang organization: Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University – sequence: 11 givenname: Yaoyao surname: Ren fullname: Ren, Yaoyao organization: Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital – sequence: 12 givenname: Qiong surname: Qin fullname: Qin, Qiong organization: Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital – sequence: 13 givenname: Qi surname: Xin fullname: Xin, Qi organization: Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University – sequence: 14 givenname: Shu-Lin orcidid: 0000-0002-1043-4238 surname: Liu fullname: Liu, Shu-Lin organization: State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University – sequence: 15 givenname: Peiyu surname: Yao fullname: Yao, Peiyu organization: State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University – sequence: 16 givenname: Bo orcidid: 0000-0001-8745-2752 surname: Zhang fullname: Zhang, Bo organization: Department of Biomedical Engineering, Southern University of Science and Technology – sequence: 17 givenname: Jingkai surname: Yang fullname: Yang, Jingkai organization: Department of Biomedical Engineering, Southern University of Science and Technology – sequence: 18 givenname: Ruoli surname: Zhao fullname: Zhao, Ruoli organization: Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University – sequence: 19 givenname: Yuan surname: Li fullname: Li, Yuan organization: Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University – sequence: 20 givenname: Ran surname: Luo fullname: Luo, Ran organization: School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University – sequence: 21 givenname: Yikai surname: Fu fullname: Fu, Yikai organization: Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University – sequence: 22 givenname: Yonghui orcidid: 0000-0002-6105-6484 surname: Li fullname: Li, Yonghui organization: Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University – sequence: 23 givenname: Wei surname: Long fullname: Long, Wei organization: Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine Chinese Academy of Medical, Sciences and Peking Union Medical College – sequence: 24 givenname: Shu surname: Zhang fullname: Zhang, Shu organization: Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital – sequence: 25 givenname: Haitao surname: Dai fullname: Dai, Haitao organization: Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University – sequence: 26 givenname: Changlong surname: Liu fullname: Liu, Changlong organization: Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University – sequence: 27 givenname: Jianning orcidid: 0000-0003-3627-863X surname: Zhang fullname: Zhang, Jianning organization: Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital – sequence: 28 givenname: Jin surname: Chang fullname: Chang, Jin organization: School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University – sequence: 29 givenname: Xiaoyu orcidid: 0000-0002-6053-9775 surname: Mu fullname: Mu, Xiaoyu email: muxiaoyu@tju.edu.cn organization: Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University – sequence: 30 givenname: Xiao-Dong orcidid: 0000-0002-7212-0138 surname: Zhang fullname: Zhang, Xiao-Dong email: xiaodongzhang@tju.edu.cn organization: Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39333142$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhS1UREvpH2CBIrFhE_ArjrNCVcWjUiVYwNq6sZ3BI4892E6r4dfjmbTQdlFvYiXfOTr35rxERyEGi9Brgt8TzOSHzAkXfYspbzsqJG9vnqETijlpSU_Z0b37MTrLeY3rYQORnL9Ax2xgjBFOT5A6L3HjdJs1eNvkksCFxoaVC9YmF1ZNnBo4IOD9rkk2R39tTfO9NNrPudiUmyoKWdtg9nyAMifw1ePPbmPzK_R8Ap_t2e3zFP38_OnHxdf26tuXy4vzq1Z3nJTW9IPuJjuxiQLjAENHRtZrwaUQhoAYDMHUSC5HPIEhYyd6qFQPXOKeYstO0eXiayKs1Ta5DaSdiuDU4UVMKwWpOO2tEl03sJFLiw3hkolxEqzvuZC0B4pHUr0-Ll7bedxYUyerE_oHpg-_BPdLreK1IoQzMXSyOry7dUjx92xzURtXN-Q9BBvnrBghNfZQZ6ro20foOs4p1F0dqE4QzEWl3tyP9C_L3Y-sgFwAnWLOyU5KuwLFxX1C5xXBal8btdRG1dqoQ23UTZXSR9I79ydFbBHl7b4mNv2P_YTqL_cG1ak |
CitedBy_id | crossref_primary_10_1039_D4TB02316A crossref_primary_10_1016_j_cej_2025_159940 crossref_primary_10_1039_D4NR04527K crossref_primary_10_1007_s00604_025_07082_4 crossref_primary_10_1039_D4BM01371A crossref_primary_10_1002_adma_202411967 |
Cites_doi | 10.1002/adma.201302685 10.1038/s41467-021-22681-4 10.1021/acsnano.9b05075 10.1038/nmat1840 10.1038/s41929-019-0365-9 10.1038/s41586-021-03870-z 10.1002/smll.201703736 10.1021/cs300809j 10.1103/PhysRevB.50.17953 10.1038/s41467-019-11766-w 10.1002/adma.200800632 10.1038/s41467-022-35022-w 10.1021/jacs.5b12070 10.1021/ja5030172 10.1038/s41467-021-27194-8 10.1002/adma.202200255 10.1002/jcc.22885 10.1038/s41565-022-01179-0 10.1021/acsaem.0c02129 10.1021/acscatal.9b00601 10.1038/s41467-022-31971-4 10.1038/ncomms6788 10.1103/PhysRevLett.81.2819 10.1038/s41586-024-07090-z 10.1002/anie.201509241 10.1038/s41929-021-00609-x 10.1038/nchem.623 10.1021/acs.chemrev.8b00672 10.1007/s11244-013-0159-2 10.1038/nnano.2017.131 10.1038/natrevmats.2016.9 10.1039/c2cs35189g 10.1126/science.aah6133 10.1126/sciadv.abb2695 10.1038/s41467-022-31660-2 10.1016/0927-0256(96)00008-0 10.1038/35090585 10.1038/s41929-021-00632-y 10.1038/s41565-018-0089-z 10.1021/jacs.8b11949 10.1126/science.abm2612 10.1016/j.sintl.2020.100031 10.1038/ncomms8594 10.1038/s41929-021-00679-x 10.1038/nnano.2007.260 10.1039/C0SC00489H 10.1038/s41929-022-00756-9 10.1016/j.ultramic.2016.08.018 10.1126/science.aaf7680 10.1021/acscatal.0c00224 10.1016/j.tips.2017.11.003 10.1126/science.aad8892 10.1038/s41467-022-32411-z 10.1021/acs.nanolett.9b03782 10.1038/s41467-019-08657-5 10.1038/s41929-018-0054-0 10.1038/s41467-023-36147-2 10.1021/cm200382s 10.1038/nchem.1253 10.1021/acs.nanolett.1c00380 10.1103/PhysRevB.46.6671 10.1038/s41929-022-00846-8 10.1126/sciadv.aav5490 10.1103/PhysRevB.54.11169 10.1038/s41467-020-20275-0 10.1021/acsnano.5b03525 10.1021/ja0742784 10.1038/s41467-019-12864-5 10.1038/s41467-018-03903-8 10.1016/j.matt.2024.02.002 10.1038/s41467-022-31665-x 10.1126/sciadv.abk1210 10.1021/jacs.0c12605 10.1038/s41563-018-0133-2 10.1016/0039-6028(96)80007-0 10.1038/nnano.2012.90 10.1126/science.257.5072.897 10.1038/s41563-023-01528-x 10.1021/acsnano.6b00321 10.1021/ja306348d 10.1038/s41467-020-20027-0 10.1126/science.aab0801 10.1038/nrc2351 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-52684-w |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_65593b48e0d14836bf637746827a20b1 PMC11436958 39333142 10_1038_s41467_024_52684_w |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 11804248; 82001952 funderid: https://doi.org/10.13039/501100001809 – fundername: STI 2030-Major Projects (2022ZD0210200) National Natural Science Foundation of Tianjin (Nos. 20JCYBJC00940 and 21JCYBJC00550) – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 82001952 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 11804248 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-d79c5fef3f2a34aa951b37c64866d1a69d102d848b0fad1b567aaa97a480720e3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:27:20 EDT 2025 Thu Aug 21 18:31:24 EDT 2025 Tue Aug 05 10:44:34 EDT 2025 Wed Aug 13 05:28:24 EDT 2025 Tue Jun 17 01:30:28 EDT 2025 Thu Apr 24 23:11:32 EDT 2025 Tue Jul 01 02:37:36 EDT 2025 Fri Feb 21 02:37:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-d79c5fef3f2a34aa951b37c64866d1a69d102d848b0fad1b567aaa97a480720e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3627-863X 0000-0002-7212-0138 0000-0001-8745-2752 0000-0002-6105-6484 0000-0002-1043-4238 0000-0002-6053-9775 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-52684-w |
PMID | 39333142 |
PQID | 3110561046 |
PQPubID | 546298 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_65593b48e0d14836bf637746827a20b1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11436958 proquest_miscellaneous_3110729102 proquest_journals_3110561046 pubmed_primary_39333142 crossref_citationtrail_10_1038_s41467_024_52684_w crossref_primary_10_1038_s41467_024_52684_w springer_journals_10_1038_s41467_024_52684_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-27 |
PublicationDateYYYYMMDD | 2024-09-27 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Wu (CR31) 2022; 13 Ji (CR41) 2021; 4 Li (CR20) 2022; 5 Kresse, Furthmüller (CR80) 1996; 54 Zhang (CR34) 2019; 9 Khorshidi, Violet, Hashemi, Peterson (CR55) 2018; 1 Mukherjee, Gamler, Skrabalak, Unocic (CR63) 2020; 10 Broto (CR2) 2022; 17 Nishida (CR48) 2008; 20 Liu, Corma (CR61) 2021; 4 Poerwoprajitno (CR35) 2022; 5 Sundararaman, Narang, Jermyn, Goddard Iii, Atwater (CR57) 2014; 5 Liu (CR51) 2024; 626 Yang, Kim, Tak, Soon, Lee (CR36) 2016; 55 Bu (CR23) 2016; 354 Zhang (CR6) 2023; 14 Escudero-Escribano (CR18) 2016; 352 De Backer, van den Bos, Van den Broek, Sijbers, Van Aert (CR49) 2016; 171 Wang, Yamauchi (CR78) 2011; 23 Gao (CR45) 2007; 2 Wang (CR13) 2016; 354 Zhang, Yin, Yin (CR15) 2020; 3 Li (CR29) 2019; 2 Wang (CR68) 2021; 12 Wang (CR4) 2018; 14 Hammer, Nørskov (CR64) 1995; 343 Li (CR52) 2021; 12 Mistry, Varela, Kühl, Strasser, Cuenya (CR60) 2016; 1 He (CR10) 2021; 598 Zhang (CR73) 2016; 138 Rodriguez, Goodman (CR8) 1992; 257 Mavrikakis, Hammer, Nørskov (CR12) 1998; 81 Wang (CR39) 2022; 375 Fang (CR32) 2011; 2 Wang (CR67) 2019; 10 Zhang (CR17) 2014; 136 Cao (CR69) 2022; 34 Fan (CR83) 2012; 7 Stamenkovic (CR21) 2007; 6 Wang, Mu, He, Zhang (CR76) 2018; 39 Aslam, Chavez, Linic (CR56) 2017; 12 Huang, Chen, Gan, Wang, Dong (CR42) 2019; 5 Lu, Chen (CR84) 2012; 33 Xiong (CR26) 2019; 10 Zhang (CR40) 2022; 13 Willhammar (CR30) 2012; 4 Kresse, Furthmüller (CR79) 1996; 6 Du (CR50) 2019; 10 Ping (CR25) 2021; 21 Escudero-Escribano (CR59) 2012; 134 Koh, Strasser (CR11) 2007; 129 Chattot (CR28) 2018; 17 Zhang (CR22) 2015; 349 Vojvodic, Nørskov, Abild-Pedersen (CR62) 2014; 57 Li (CR53) 2018; 13 Mu (CR74) 2021; 7 Mu (CR5) 2019; 13 Xia (CR47) 2015; 9 Zhang (CR43) 2022; 13 Yan (CR3) 2019; 13 Rao, Aslam, Linic (CR58) 2019; 141 Fan (CR70) 2018; 9 Yang, Lee (CR37) 2013; 3 Guan (CR19) 2021; 4 Ma (CR38) 2024; 7 Strasser (CR7) 2010; 2 Atlan (CR16) 2023; 22 Hu (CR9) 2022; 13 Huang, Ren, Qu (CR71) 2019; 119 Dhanasekaran (CR65) 2001; 412 Wang (CR24) 2015; 6 Xie (CR27) 2013; 25 Xi (CR33) 2020; 20 Li (CR1) 2022; 13 Liu (CR77) 2020; 11 Liu (CR72) 2020; 6 Perdew (CR82) 1992; 46 Xi (CR46) 2021; 143 Blöchl (CR81) 1994; 50 Liu (CR54) 2021; 12 Zhang (CR75) 2016; 10 Wu (CR14) 2012; 41 Davidson, Xi, Gao, Xia (CR44) 2020; 1 Lilja, Ulmert, Vickers (CR66) 2008; 8 L Wang (52684_CR39) 2022; 375 B Hammer (52684_CR64) 1995; 343 Z Wang (52684_CR68) 2021; 12 H Wang (52684_CR76) 2018; 39 K Du (52684_CR50) 2019; 10 P Strasser (52684_CR7) 2010; 2 VR Stamenkovic (52684_CR21) 2007; 6 Y Huang (52684_CR71) 2019; 119 K Fan (52684_CR83) 2012; 7 H Li (52684_CR53) 2018; 13 JA Rodriguez (52684_CR8) 1992; 257 X Mu (52684_CR5) 2019; 13 L Bu (52684_CR23) 2016; 354 S Zhang (52684_CR43) 2022; 13 L Zhang (52684_CR22) 2015; 349 A De Backer (52684_CR49) 2016; 171 A Khorshidi (52684_CR55) 2018; 1 L Xiong (52684_CR26) 2019; 10 N Nishida (52684_CR48) 2008; 20 SM Dhanasekaran (52684_CR65) 2001; 412 M Escudero-Escribano (52684_CR59) 2012; 134 S Zhang (52684_CR17) 2014; 136 X Mu (52684_CR74) 2021; 7 R Sundararaman (52684_CR57) 2014; 5 J Wu (52684_CR14) 2012; 41 E Davidson (52684_CR44) 2020; 1 U Aslam (52684_CR56) 2017; 12 Z Li (52684_CR29) 2019; 2 H Mistry (52684_CR60) 2016; 1 T Lu (52684_CR84) 2012; 33 Q Hu (52684_CR9) 2022; 13 R Yan (52684_CR3) 2019; 13 J Zhang (52684_CR15) 2020; 3 G Kresse (52684_CR79) 1996; 6 X Wang (52684_CR24) 2015; 6 S Koh (52684_CR11) 2007; 129 JP Perdew (52684_CR82) 1992; 46 X-D Zhang (52684_CR75) 2016; 10 M Mavrikakis (52684_CR12) 1998; 81 Z Xi (52684_CR33) 2020; 20 Y Liu (52684_CR72) 2020; 6 AR Poerwoprajitno (52684_CR35) 2022; 5 H Wang (52684_CR13) 2016; 354 J Xie (52684_CR27) 2013; 25 S Yang (52684_CR36) 2016; 55 A Vojvodic (52684_CR62) 2014; 57 X Li (52684_CR52) 2021; 12 T He (52684_CR10) 2021; 598 Z Xi (52684_CR46) 2021; 143 X Xia (52684_CR47) 2015; 9 L Liu (52684_CR61) 2021; 4 L Gao (52684_CR45) 2007; 2 W Zhang (52684_CR73) 2016; 138 L Huang (52684_CR42) 2019; 5 Q Guan (52684_CR19) 2021; 4 F Li (52684_CR1) 2022; 13 B Zhang (52684_CR40) 2022; 13 R Chattot (52684_CR28) 2018; 17 J Zhang (52684_CR34) 2019; 9 X Wang (52684_CR67) 2019; 10 T Willhammar (52684_CR30) 2012; 4 G Liu (52684_CR51) 2024; 626 G Wu (52684_CR31) 2022; 13 L Wang (52684_CR78) 2011; 23 H Ma (52684_CR38) 2024; 7 J-Y Wang (52684_CR4) 2018; 14 X Ping (52684_CR25) 2021; 21 H Lilja (52684_CR66) 2008; 8 S Ji (52684_CR41) 2021; 4 X Zhang (52684_CR6) 2023; 14 M Escudero-Escribano (52684_CR18) 2016; 352 G Kresse (52684_CR80) 1996; 54 D Mukherjee (52684_CR63) 2020; 10 S Yang (52684_CR37) 2013; 3 H Liu (52684_CR54) 2021; 12 K Fan (52684_CR70) 2018; 9 P-P Fang (52684_CR32) 2011; 2 M Broto (52684_CR2) 2022; 17 P Li (52684_CR20) 2022; 5 VG Rao (52684_CR58) 2019; 141 PE Blöchl (52684_CR81) 1994; 50 S Cao (52684_CR69) 2022; 34 C Atlan (52684_CR16) 2023; 22 G Liu (52684_CR77) 2020; 11 |
References_xml | – volume: 25 start-page: 5807 year: 2013 end-page: 5813 ident: CR27 article-title: Defect-rich mos ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution publication-title: Adv. Mater. doi: 10.1002/adma.201302685 – volume: 12 year: 2021 ident: CR52 article-title: Ordered clustering of single atomic te vacancies in atomically thin ptte promotes hydrogen evolution catalysis publication-title: Nat. Commun. doi: 10.1038/s41467-021-22681-4 – volume: 13 start-page: 11552 year: 2019 end-page: 11560 ident: CR3 article-title: Nanozyme-based bandage with single-atom catalysis for brain trauma publication-title: ACS Nano doi: 10.1021/acsnano.9b05075 – volume: 6 start-page: 241 year: 2007 end-page: 247 ident: CR21 article-title: Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces publication-title: Nat. Mater. doi: 10.1038/nmat1840 – volume: 2 start-page: 1107 year: 2019 end-page: 1114 ident: CR29 article-title: A silver catalyst activated by stacking faults for the hydrogen evolution reaction publication-title: Nat. Catal. doi: 10.1038/s41929-019-0365-9 – volume: 598 start-page: 76 year: 2021 end-page: 81 ident: CR10 article-title: Mastering the surface strain of platinum catalysts for efficient electrocatalysis publication-title: Nature doi: 10.1038/s41586-021-03870-z – volume: 14 year: 2018 ident: CR4 article-title: Hollow ptpdrh nanocubes with enhanced catalytic activities for in vivo clearance of radiation-induced ros via surface-mediated bond breaking publication-title: Small doi: 10.1002/smll.201703736 – volume: 3 start-page: 437 year: 2013 end-page: 443 ident: CR37 article-title: Atomically dispersed platinum on gold nano-octahedra with high catalytic activity on formic acid oxidation publication-title: ACS Catal. doi: 10.1021/cs300809j – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR81 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 10 year: 2019 ident: CR26 article-title: Octahedral gold-silver nanoframes with rich crystalline defects for efficient methanol oxidation manifesting a co-promoting effect publication-title: Nat. Commun. doi: 10.1038/s41467-019-11766-w – volume: 20 start-page: 4719 year: 2008 end-page: 4723 ident: CR48 article-title: Fluorescent gold nanoparticle superlattices publication-title: Adv. Mater. doi: 10.1002/adma.200800632 – volume: 13 year: 2022 ident: CR1 article-title: A nuclease-mimetic platinum nanozyme induces concurrent DNA platination and oxidative cleavage to overcome cancer drug resistance publication-title: Nat. Commun. doi: 10.1038/s41467-022-35022-w – volume: 138 start-page: 5860 year: 2016 end-page: 5865 ident: CR73 article-title: Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b12070 – volume: 136 start-page: 7734 year: 2014 end-page: 7739 ident: CR17 article-title: Tuning nanoparticle structure and surface strain for catalysis optimization publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5030172 – volume: 12 year: 2021 ident: CR68 article-title: Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening publication-title: Nat. Commun. doi: 10.1038/s41467-021-27194-8 – volume: 34 start-page: 2200255 year: 2022 ident: CR69 article-title: A library of ros-catalytic metalloenzyme mimics with atomic metal centers publication-title: Adv. Mater. doi: 10.1002/adma.202200255 – volume: 33 start-page: 580 year: 2012 end-page: 592 ident: CR84 article-title: Multiwfn: a multifunctional wavefunction analyzer publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 – volume: 17 start-page: 1120 year: 2022 end-page: 1126 ident: CR2 article-title: Nanozyme-catalysed crispr assay for preamplification-free detection of non-coding rnas publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01179-0 – volume: 3 start-page: 11956 year: 2020 end-page: 11963 ident: CR15 article-title: Strain engineering to enhance the oxidation reduction reaction performance of atomic-layer Pt on nanoporous gold publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c02129 – volume: 9 start-page: 5998 year: 2019 end-page: 6005 ident: CR34 article-title: Tin-assisted fully exposed platinum clusters stabilized on defect-rich graphene for dehydrogenation reaction publication-title: ACS Catal. doi: 10.1021/acscatal.9b00601 – volume: 13 year: 2022 ident: CR31 article-title: In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity publication-title: Nat. Commun. doi: 10.1038/s41467-022-31971-4 – volume: 5 year: 2014 ident: CR57 article-title: Theoretical predictions for hot-carrier generation from surface plasmon decay publication-title: Nat. Commun. doi: 10.1038/ncomms6788 – volume: 81 start-page: 2819 year: 1998 end-page: 2822 ident: CR12 article-title: Effect of strain on the reactivity of metal surfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.2819 – volume: 626 start-page: 1005 year: 2024 end-page: 1010 ident: CR51 article-title: Site-specific reactivity of stepped Pt surfaces driven by stress release publication-title: Nature doi: 10.1038/s41586-024-07090-z – volume: 55 start-page: 2058 year: 2016 end-page: 2062 ident: CR36 article-title: Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201509241 – volume: 4 start-page: 407 year: 2021 end-page: 417 ident: CR41 article-title: Matching the kinetics of natural enzymes with a single-atom iron nanozyme publication-title: Nat. Catal. doi: 10.1038/s41929-021-00609-x – volume: 2 start-page: 454 year: 2010 end-page: 460 ident: CR7 article-title: Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts publication-title: Nat. Chem. doi: 10.1038/nchem.623 – volume: 119 start-page: 4357 year: 2019 end-page: 4412 ident: CR71 article-title: Nanozymes: classification, catalytic mechanisms, activity regulation, and applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00672 – volume: 57 start-page: 25 year: 2014 end-page: 32 ident: CR62 article-title: Electronic structure effects in transition metal surface chemistry publication-title: Top. Catal. doi: 10.1007/s11244-013-0159-2 – volume: 12 start-page: 1000 year: 2017 end-page: 1005 ident: CR56 article-title: Controlling energy flow in multimetallic nanostructures for plasmonic catalysis publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.131 – volume: 1 start-page: 16009 year: 2016 ident: CR60 article-title: Nanostructured electrocatalysts with tunable activity and selectivity publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.9 – volume: 41 start-page: 8066 year: 2012 end-page: 8074 ident: CR14 article-title: Surface lattice-engineered bimetallic nanoparticles and their catalytic properties publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35189g – volume: 13 start-page: 1870 year: 2019 end-page: 1884 ident: CR5 article-title: Redox trimetallic nanozyme with neutral environment preference for brain injury publication-title: ACS Nano – volume: 354 start-page: 1410 year: 2016 end-page: 1414 ident: CR23 article-title: Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis publication-title: Science doi: 10.1126/science.aah6133 – volume: 6 start-page: eabb2695 year: 2020 ident: CR72 article-title: Integrated cascade nanozyme catalyzes in vivo ros scavenging for anti-inflammatory therapy publication-title: Sci. Adv. doi: 10.1126/sciadv.abb2695 – volume: 13 year: 2022 ident: CR9 article-title: Subnanometric Ru clusters with upshifted d band center improve performance for alkaline hydrogen evolution reaction publication-title: Nat. Commun. doi: 10.1038/s41467-022-31660-2 – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR79 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 412 start-page: 822 year: 2001 end-page: 826 ident: CR65 article-title: Delineation of prognostic biomarkers in prostate cancer publication-title: Nature doi: 10.1038/35090585 – volume: 4 start-page: 453 year: 2021 end-page: 456 ident: CR61 article-title: Identification of the active sites in supported subnanometric metal catalysts publication-title: Nat. Catal. doi: 10.1038/s41929-021-00632-y – volume: 13 start-page: 411 year: 2018 end-page: 417 ident: CR53 article-title: Synergetic interaction between neighbouring platinum monomers in CO hydrogenation publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0089-z – volume: 141 start-page: 643 year: 2019 end-page: 647 ident: CR58 article-title: Chemical requirement for extracting energetic charge carriers from plasmonic metal nanoparticles to perform electron-transfer reactions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11949 – volume: 375 start-page: 1261 year: 2022 end-page: 1265 ident: CR39 article-title: Tracking the sliding of grain boundaries at the atomic scale publication-title: Science doi: 10.1126/science.abm2612 – volume: 1 start-page: 100031 year: 2020 ident: CR44 article-title: Ultrafast and sensitive colorimetric detection of ascorbic acid with Pd-Pt core-shell nanostructure as peroxidase mimic publication-title: Sens. Int. doi: 10.1016/j.sintl.2020.100031 – volume: 6 year: 2015 ident: CR24 article-title: Palladium–platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction publication-title: Nat. Commun. doi: 10.1038/ncomms8594 – volume: 4 start-page: 840 year: 2021 end-page: 849 ident: CR19 article-title: Bimetallic monolayer catalyst breaks the activity–selectivity trade-off on metal particle size for efficient chemoselective hydrogenations publication-title: Nat. Catal. doi: 10.1038/s41929-021-00679-x – volume: 2 start-page: 577 year: 2007 end-page: 583 ident: CR45 article-title: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.260 – volume: 2 start-page: 531 year: 2011 end-page: 539 ident: CR32 article-title: Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity publication-title: Chem. Sci. doi: 10.1039/C0SC00489H – volume: 5 start-page: 231 year: 2022 end-page: 237 ident: CR35 article-title: A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for co-resilient methanol oxidation publication-title: Nat. Catal. doi: 10.1038/s41929-022-00756-9 – volume: 171 start-page: 104 year: 2016 end-page: 116 ident: CR49 article-title: StatSTEM: an efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2016.08.018 – volume: 354 start-page: 1031 year: 2016 end-page: 1036 ident: CR13 article-title: Direct and continuous strain control of catalysts with tunable battery electrode materials publication-title: Science doi: 10.1126/science.aaf7680 – volume: 10 start-page: 5529 year: 2020 end-page: 5541 ident: CR63 article-title: Lattice strain measurement of core@shell electrocatalysts with 4d scanning transmission electron microscopy nanobeam electron diffraction publication-title: ACS Catal. doi: 10.1021/acscatal.0c00224 – volume: 39 start-page: 24 year: 2018 end-page: 48 ident: CR76 article-title: Cancer radiosensitizers publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2017.11.003 – volume: 352 start-page: 73 year: 2016 end-page: 76 ident: CR18 article-title: Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction publication-title: Science doi: 10.1126/science.aad8892 – volume: 13 year: 2022 ident: CR43 article-title: Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma publication-title: Nat. Commun. doi: 10.1038/s41467-022-32411-z – volume: 20 start-page: 272 year: 2020 end-page: 277 ident: CR33 article-title: Strain effect in palladium nanostructures as nanozymes publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b03782 – volume: 10 year: 2019 ident: CR67 article-title: Eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics publication-title: Nat. Commun. doi: 10.1038/s41467-019-08657-5 – volume: 1 start-page: 263 year: 2018 end-page: 268 ident: CR55 article-title: How strain can break the scaling relations of catalysis publication-title: Nat. Catal. doi: 10.1038/s41929-018-0054-0 – volume: 14 year: 2023 ident: CR6 article-title: Conjugated dual size effect of core-shell particles synergizes bimetallic catalysis publication-title: Nat. Commun. doi: 10.1038/s41467-023-36147-2 – volume: 23 start-page: 2457 year: 2011 end-page: 2465 ident: CR78 article-title: Strategic synthesis of trimetallic Au@Pd@Pt core−shell nanoparticles from poly(vinylpyrrolidone)-based aqueous solution toward highly active electrocatalysts publication-title: Chem. Mater. doi: 10.1021/cm200382s – volume: 4 start-page: 188 year: 2012 end-page: 194 ident: CR30 article-title: Structure and catalytic properties of the most complex intergrown zeolite itq-39 determined by electron crystallography publication-title: Nat. Chem. doi: 10.1038/nchem.1253 – volume: 21 start-page: 3857 year: 2021 end-page: 3863 ident: CR25 article-title: Activating a two-dimensional PtSe basal plane for the hydrogen evolution reaction through the simultaneous generation of atomic vacancies and Pt clusters publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c00380 – volume: 46 start-page: 6671 year: 1992 end-page: 6687 ident: CR82 article-title: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.6671 – volume: 5 start-page: 900 year: 2022 end-page: 911 ident: CR20 article-title: Hydrogen bond network connectivity in the electric double layer dominates the kinetic ph effect in hydrogen electrocatalysis on Pt publication-title: Nat. Catal. doi: 10.1038/s41929-022-00846-8 – volume: 5 start-page: eaav5490 year: 2019 ident: CR42 article-title: Single-atom nanozymes publication-title: Sci. Adv. doi: 10.1126/sciadv.aav5490 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR80 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 12 year: 2021 ident: CR54 article-title: Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions publication-title: Nat. Commun. doi: 10.1038/s41467-020-20275-0 – volume: 9 start-page: 9994 year: 2015 end-page: 10004 ident: CR47 article-title: Pd–Ir core–shell nanocubes: a type of highly efficient and versatile peroxidase mimic publication-title: ACS Nano doi: 10.1021/acsnano.5b03525 – volume: 129 start-page: 12624 year: 2007 end-page: 12625 ident: CR11 article-title: Electrocatalysis on bimetallic surfaces: Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0742784 – volume: 10 year: 2019 ident: CR50 article-title: Manipulating topological transformations of polar structures through real-time observation of the dynamic polarization evolution publication-title: Nat. Commun. doi: 10.1038/s41467-019-12864-5 – volume: 9 year: 2018 ident: CR70 article-title: In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy publication-title: Nat. Commun. doi: 10.1038/s41467-018-03903-8 – volume: 7 start-page: 1660 year: 2024 end-page: 1676 ident: CR38 article-title: Atomically precise ag clusters for intelligent nir-ii imaging publication-title: Matter doi: 10.1016/j.matt.2024.02.002 – volume: 13 year: 2022 ident: CR40 article-title: Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels publication-title: Nat. Commun. doi: 10.1038/s41467-022-31665-x – volume: 7 start-page: eabk1210 year: 2021 ident: CR74 article-title: An oligomeric semiconducting nanozyme with ultrafast electron transfers alleviates acute brain injury publication-title: Sci. Adv. doi: 10.1126/sciadv.abk1210 – volume: 143 start-page: 2660 year: 2021 end-page: 2664 ident: CR46 article-title: Nickel–platinum nanoparticles as peroxidase mimics with a record high catalytic efficiency publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c12605 – volume: 17 start-page: 827 year: 2018 end-page: 833 ident: CR28 article-title: Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis publication-title: Nat. Mater. doi: 10.1038/s41563-018-0133-2 – volume: 343 start-page: 211 year: 1995 end-page: 220 ident: CR64 article-title: Electronic factors determining the reactivity of metal surfaces publication-title: Surf. Sci. doi: 10.1016/0039-6028(96)80007-0 – volume: 7 start-page: 459 year: 2012 end-page: 464 ident: CR83 article-title: Magnetoferritin nanoparticles for targeting and visualizing tumour tissues publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.90 – volume: 257 start-page: 897 year: 1992 end-page: 903 ident: CR8 article-title: The nature of the metal-metal bond in bimetallic surfaces publication-title: Science doi: 10.1126/science.257.5072.897 – volume: 22 start-page: 754 year: 2023 end-page: 761 ident: CR16 article-title: Imaging the strain evolution of a platinum nanoparticle under electrochemical control publication-title: Nat. Mater. doi: 10.1038/s41563-023-01528-x – volume: 10 start-page: 4511 year: 2016 end-page: 4519 ident: CR75 article-title: Highly catalytic nanodots with renal clearance for radiation protection publication-title: ACS Nano doi: 10.1021/acsnano.6b00321 – volume: 134 start-page: 16476 year: 2012 end-page: 16479 ident: CR59 article-title: Pt Gd as a highly active and stable catalyst for oxygen electroreduction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja306348d – volume: 11 year: 2020 ident: CR77 article-title: High-throughput preparation of radioprotective polymers via Hantzsch’s reaction for in vivo x-ray damage determination publication-title: Nat. Commun. doi: 10.1038/s41467-020-20027-0 – volume: 349 start-page: 412 year: 2015 end-page: 416 ident: CR22 article-title: Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets publication-title: Science doi: 10.1126/science.aab0801 – volume: 8 start-page: 268 year: 2008 end-page: 278 ident: CR66 article-title: Prostate-specific antigen and prostate cancer: prediction, detection and monitoring publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2351 – volume: 41 start-page: 8066 year: 2012 ident: 52684_CR14 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35189g – volume: 136 start-page: 7734 year: 2014 ident: 52684_CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5030172 – volume: 1 start-page: 16009 year: 2016 ident: 52684_CR60 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.9 – volume: 14 year: 2018 ident: 52684_CR4 publication-title: Small doi: 10.1002/smll.201703736 – volume: 171 start-page: 104 year: 2016 ident: 52684_CR49 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2016.08.018 – volume: 17 start-page: 1120 year: 2022 ident: 52684_CR2 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01179-0 – volume: 412 start-page: 822 year: 2001 ident: 52684_CR65 publication-title: Nature doi: 10.1038/35090585 – volume: 4 start-page: 453 year: 2021 ident: 52684_CR61 publication-title: Nat. Catal. doi: 10.1038/s41929-021-00632-y – volume: 81 start-page: 2819 year: 1998 ident: 52684_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.2819 – volume: 5 start-page: 231 year: 2022 ident: 52684_CR35 publication-title: Nat. Catal. doi: 10.1038/s41929-022-00756-9 – volume: 21 start-page: 3857 year: 2021 ident: 52684_CR25 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c00380 – volume: 50 start-page: 17953 year: 1994 ident: 52684_CR81 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 13 start-page: 1870 year: 2019 ident: 52684_CR5 publication-title: ACS Nano – volume: 12 year: 2021 ident: 52684_CR52 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22681-4 – volume: 34 start-page: 2200255 year: 2022 ident: 52684_CR69 publication-title: Adv. Mater. doi: 10.1002/adma.202200255 – volume: 10 start-page: 5529 year: 2020 ident: 52684_CR63 publication-title: ACS Catal. doi: 10.1021/acscatal.0c00224 – volume: 6 start-page: eabb2695 year: 2020 ident: 52684_CR72 publication-title: Sci. Adv. doi: 10.1126/sciadv.abb2695 – volume: 6 start-page: 15 year: 1996 ident: 52684_CR79 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 57 start-page: 25 year: 2014 ident: 52684_CR62 publication-title: Top. Catal. doi: 10.1007/s11244-013-0159-2 – volume: 39 start-page: 24 year: 2018 ident: 52684_CR76 publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2017.11.003 – volume: 5 start-page: 900 year: 2022 ident: 52684_CR20 publication-title: Nat. Catal. doi: 10.1038/s41929-022-00846-8 – volume: 626 start-page: 1005 year: 2024 ident: 52684_CR51 publication-title: Nature doi: 10.1038/s41586-024-07090-z – volume: 598 start-page: 76 year: 2021 ident: 52684_CR10 publication-title: Nature doi: 10.1038/s41586-021-03870-z – volume: 13 start-page: 411 year: 2018 ident: 52684_CR53 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0089-z – volume: 54 start-page: 11169 year: 1996 ident: 52684_CR80 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 33 start-page: 580 year: 2012 ident: 52684_CR84 publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 – volume: 20 start-page: 272 year: 2020 ident: 52684_CR33 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b03782 – volume: 2 start-page: 531 year: 2011 ident: 52684_CR32 publication-title: Chem. Sci. doi: 10.1039/C0SC00489H – volume: 12 year: 2021 ident: 52684_CR68 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27194-8 – volume: 129 start-page: 12624 year: 2007 ident: 52684_CR11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0742784 – volume: 349 start-page: 412 year: 2015 ident: 52684_CR22 publication-title: Science doi: 10.1126/science.aab0801 – volume: 2 start-page: 577 year: 2007 ident: 52684_CR45 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.260 – volume: 12 start-page: 1000 year: 2017 ident: 52684_CR56 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.131 – volume: 7 start-page: eabk1210 year: 2021 ident: 52684_CR74 publication-title: Sci. Adv. doi: 10.1126/sciadv.abk1210 – volume: 1 start-page: 100031 year: 2020 ident: 52684_CR44 publication-title: Sens. Int. doi: 10.1016/j.sintl.2020.100031 – volume: 3 start-page: 11956 year: 2020 ident: 52684_CR15 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c02129 – volume: 2 start-page: 1107 year: 2019 ident: 52684_CR29 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0365-9 – volume: 354 start-page: 1410 year: 2016 ident: 52684_CR23 publication-title: Science doi: 10.1126/science.aah6133 – volume: 13 year: 2022 ident: 52684_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31971-4 – volume: 138 start-page: 5860 year: 2016 ident: 52684_CR73 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b12070 – volume: 6 start-page: 241 year: 2007 ident: 52684_CR21 publication-title: Nat. Mater. doi: 10.1038/nmat1840 – volume: 13 year: 2022 ident: 52684_CR43 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32411-z – volume: 4 start-page: 407 year: 2021 ident: 52684_CR41 publication-title: Nat. Catal. doi: 10.1038/s41929-021-00609-x – volume: 11 year: 2020 ident: 52684_CR77 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20027-0 – volume: 46 start-page: 6671 year: 1992 ident: 52684_CR82 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.6671 – volume: 375 start-page: 1261 year: 2022 ident: 52684_CR39 publication-title: Science doi: 10.1126/science.abm2612 – volume: 5 start-page: eaav5490 year: 2019 ident: 52684_CR42 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav5490 – volume: 352 start-page: 73 year: 2016 ident: 52684_CR18 publication-title: Science doi: 10.1126/science.aad8892 – volume: 10 year: 2019 ident: 52684_CR67 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08657-5 – volume: 17 start-page: 827 year: 2018 ident: 52684_CR28 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0133-2 – volume: 143 start-page: 2660 year: 2021 ident: 52684_CR46 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c12605 – volume: 20 start-page: 4719 year: 2008 ident: 52684_CR48 publication-title: Adv. Mater. doi: 10.1002/adma.200800632 – volume: 1 start-page: 263 year: 2018 ident: 52684_CR55 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0054-0 – volume: 8 start-page: 268 year: 2008 ident: 52684_CR66 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2351 – volume: 3 start-page: 437 year: 2013 ident: 52684_CR37 publication-title: ACS Catal. doi: 10.1021/cs300809j – volume: 22 start-page: 754 year: 2023 ident: 52684_CR16 publication-title: Nat. Mater. doi: 10.1038/s41563-023-01528-x – volume: 12 year: 2021 ident: 52684_CR54 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20275-0 – volume: 4 start-page: 840 year: 2021 ident: 52684_CR19 publication-title: Nat. Catal. doi: 10.1038/s41929-021-00679-x – volume: 6 year: 2015 ident: 52684_CR24 publication-title: Nat. Commun. doi: 10.1038/ncomms8594 – volume: 7 start-page: 1660 year: 2024 ident: 52684_CR38 publication-title: Matter doi: 10.1016/j.matt.2024.02.002 – volume: 354 start-page: 1031 year: 2016 ident: 52684_CR13 publication-title: Science doi: 10.1126/science.aaf7680 – volume: 13 year: 2022 ident: 52684_CR1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-35022-w – volume: 7 start-page: 459 year: 2012 ident: 52684_CR83 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.90 – volume: 10 year: 2019 ident: 52684_CR50 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12864-5 – volume: 2 start-page: 454 year: 2010 ident: 52684_CR7 publication-title: Nat. Chem. doi: 10.1038/nchem.623 – volume: 25 start-page: 5807 year: 2013 ident: 52684_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.201302685 – volume: 257 start-page: 897 year: 1992 ident: 52684_CR8 publication-title: Science doi: 10.1126/science.257.5072.897 – volume: 4 start-page: 188 year: 2012 ident: 52684_CR30 publication-title: Nat. Chem. doi: 10.1038/nchem.1253 – volume: 9 year: 2018 ident: 52684_CR70 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03903-8 – volume: 134 start-page: 16476 year: 2012 ident: 52684_CR59 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja306348d – volume: 343 start-page: 211 year: 1995 ident: 52684_CR64 publication-title: Surf. Sci. doi: 10.1016/0039-6028(96)80007-0 – volume: 119 start-page: 4357 year: 2019 ident: 52684_CR71 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00672 – volume: 55 start-page: 2058 year: 2016 ident: 52684_CR36 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201509241 – volume: 5 year: 2014 ident: 52684_CR57 publication-title: Nat. Commun. doi: 10.1038/ncomms6788 – volume: 23 start-page: 2457 year: 2011 ident: 52684_CR78 publication-title: Chem. Mater. doi: 10.1021/cm200382s – volume: 13 year: 2022 ident: 52684_CR40 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31665-x – volume: 10 start-page: 4511 year: 2016 ident: 52684_CR75 publication-title: ACS Nano doi: 10.1021/acsnano.6b00321 – volume: 13 year: 2022 ident: 52684_CR9 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31660-2 – volume: 13 start-page: 11552 year: 2019 ident: 52684_CR3 publication-title: ACS Nano doi: 10.1021/acsnano.9b05075 – volume: 10 year: 2019 ident: 52684_CR26 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11766-w – volume: 141 start-page: 643 year: 2019 ident: 52684_CR58 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11949 – volume: 9 start-page: 5998 year: 2019 ident: 52684_CR34 publication-title: ACS Catal. doi: 10.1021/acscatal.9b00601 – volume: 14 year: 2023 ident: 52684_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-023-36147-2 – volume: 9 start-page: 9994 year: 2015 ident: 52684_CR47 publication-title: ACS Nano doi: 10.1021/acsnano.5b03525 |
SSID | ssj0000391844 |
Score | 2.5187812 |
Snippet | Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to... Abstract Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8346 |
SubjectTerms | 119/118 631/61/350/59 631/61/54/990 639/638/77/603 64 Atomic structure Biocatalysis Biocatalysts Catalase Catalase - chemistry Catalase - metabolism Catalysis Catalytic activity Clusters Current carriers Density Functional Theory Electronic structure Enzymes Gold Gold - chemistry Horseradish peroxidase Horseradish Peroxidase - chemistry Horseradish Peroxidase - metabolism Humanities and Social Sciences Humans Laminates Metal Nanoparticles - chemistry multidisciplinary Oxidative stress Palladium Palladium - chemistry Peroxidase Platinum Platinum - chemistry Scale (corrosion) Science Science (multidisciplinary) Superoxide dismutase Superoxide Dismutase - chemistry Superoxide Dismutase - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqSki9IPoAAi0yUm9gNcn4lWNBVBUSqIdW6s2yE1sghWxFslTbX8_YyW67tIUL13iiTGbGnm809mdCDmttQ4N-ZkEgfONWAXOq0sxapYpGRL6YeN75y1d5esE_X4rLO1d9xT1hIz3waLgjiZAXHNc-bxC5g3RBAkIWqUtly9ylwgdz3p1iKq3BUGHpwqdTMjnoo56nNQFTEksMJ-x6LRMlwv6HUOb9zZJ_dExTIjp5Rp5OCJIej5pvkw3f7ZAn452Si11ijod40Jj1aHxP-3QFBPW3rIN0FqhNIrZtFxSr7Vn7yzf0bKB1O4-0CT0dYgJDTWJeo4n6Ez_ou5vFD9_vkYuTT-cfT9l0iwKrBS8Ghp6IO8oChNICtxYhlQNVS66lbAorqwYxRqO5dnmwTeGEVBallI2Hzcvcw3Oy2c06_5JQqJ2VQViIlDPCIbTivC68FCH3BQSfkWJpUVNPFOPxN1uTWt2gzegFg14wyQvmOiPvVu9cjQQbf5X-EB21kozk2OkBhoyZQsb8K2Qysr90s5lmbG8AcVDEklxm5O1qGOdabKDYzs_mowwWI2ivjLwYo2KlCVQAUHAc0Wvxsqbq-kj3_Vvi88aSFGQldEbeL0PrVq_HbfHqf9jiNdkq45yIfTa1TzaHn3N_gDBrcG_SjPoNNAIhsQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlbj2LG9J1QQVYUE4kClvVl2YgNSmpQmS7X99cw42ayWR6_xRHH8jT0zHvsbQl5VxsUacGaxBPdNOi2Y1wvDnNOa1yXyxeB950-f1cmp_Lgsl9OGWz8dq9ysiWmhrrsK98gPBcca8ZiRfHv-k2HVKMyuTiU0bpJbSF2GR7r0Us97LMh-bqSc7srkwhz2Mq0MYJhY4jlhlzv2KNH2_8vX_PvI5B9502SOju-Ru5MfSY9G4O-TG6F9QG6PlSXXD4k9GvC6MesBgkD7VAiChi33IO0idUnENc2aQszdNb9CTb8MtGpWSJ7Q0wHNGPQErRtNBKDwwdBerc9C_4icHn_4-v6ETbUUWFVKPjDAA8-VRRELJ6Rz4Fh5oSsljVI1d2pRg6dRG2l8Hl3Nfam0Aynt8Mp5kQfxmOy1XRueEioq71QsnUDimdKDgyVlxYMqYx64iCEjfDOitpqIxvE3G5sS3sLYEQULKNiEgr3MyOv5nfORZuNa6XcI1CyJFNnpQXfxzU4zziqIlYSXJuQ1hHxC-agE-LrKFNoVuecZOdjAbKd529utlmXk5dwMMw7TKK4N3WqUgZAExisjT0atmHsiFkIILqHF7OjLTld3W9of3xOrNwSmQoEOZ-TNRrW2_fr_WOxf_xvPyJ0CtR3zaPqA7A0Xq_Ac3KjBv0hz5TeeuxrQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEB_WFcGL-G3XVSJ402DbSdO84_pwWQTFgwt7C0mbqFBb2fa5PP_6naQfy9NV8NpM6XRm0vlNk_kF4GWljK_Jz9wXBN-EKZHbcqW4MWWZ1UXgiwn9zh8-ypNT8f6sONuDfO6FiZv2I6Vl_EzPu8Pe9CJOacooPBKU8IsbcDNQt4eoXsv18l8lMJ4rIab-mBTVNbfu5KBI1X8dvvxzm-Rva6UxBR3fhTsTdmRHo7b3YM-19-HWeJrk9gHooyG0GPOezO5YHw9_YO6Kb5B1npkoYppmy6jO7pqfrmafBlY1m0CY0LMhpC7SJGQ0Fi1ED3Ttr-131z-E0-N3n9cnfDo_gVeFyAZOPgh7yTz63KAwhsCUxbKSQklZZ0auakIXtRLKpt7UmS1kaUiqNKHNPE8dPoL9tmvdE2BYWSN9YTCQzRSWQJUQVeZk4VOXoXcJZLNFdTWRi4fXbHRc5EalRy9o8oKOXtAXCbxa7vkxUmv8U_ptcNQiGWix44Xu_IuewkRLqo_QCuXSmso8lNZLJHwrVV6aPLVZAoezm_U0V3uNhIACihQygRfLMM2ysHRiWtdtRhkqQ8heCTweo2LRBFeImAkaUTvxsqPq7kj77Wtk8qZiFOWqUAm8nkPrSq-_2-Lg_8Sfwu08RH9YSysPYX8437hnBKUG-zzOnUsXohlG priority: 102 providerName: Springer Nature |
Title | Atomic-scale strain engineering of atomically resolved Pt clusters transcending natural enzymes |
URI | https://link.springer.com/article/10.1038/s41467-024-52684-w https://www.ncbi.nlm.nih.gov/pubmed/39333142 https://www.proquest.com/docview/3110561046 https://www.proquest.com/docview/3110729102 https://pubmed.ncbi.nlm.nih.gov/PMC11436958 https://doaj.org/article/65593b48e0d14836bf637746827a20b1 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ6C9IL4XGJWReINAEju2-4BQV61MlTZNQKW-WU7iDKSQjCZllL-es5N0KhQeeEmk5KI4vrvc7-Lc7wBepFLnGerZz2OEb0wL6idiKH2thQiz2PLF2Hrns3N-OmPTeTzfgb7dUTeB9dbUzvaTmi2K1z--rd6hw79tS8blm5o5d8do4zvyEv96F_YxMgnrqGcd3HdvZjrEhIZ1tTPbLz2A2xSTfBqyaCNUOUb_bTD0z78pf1tSdZFqchfudBCTjFqbuAc7prwPt9qmk6sHoEaNrUT2a9SOIbXrEUHMDS0hqXKinYguihXBdLwqvpuMXDQkLZaWV6EmjY1wOBIb-IjjBsUbmvLn6qupH8JscvJpfOp3bRb8NGZh46Oq7C9nOc0jTZnWiLkSKlLOJOdZqPkwQxCSSSaTINdZmMRcaJQS2lajR4Ghj2CvrEpzCISmieZ5rKnlpIkTxF6MpaHhcR6YkObGg7CfUZV2HOT2MQvl1sKpVK1CFCpEOYWoaw9erq-5ahk4_il9bBW1lrTs2e5AtbhUnTMqjmkUTZg0QYbZIOVJzinCYC4joaMgCT046tWseotUFIGSBZuMe_B8fRqd0a6w6NJUy1YGsxWcLw8et1axHklvVR7IDXvZGOrmmfLLZ0f4jTkr5cNYevCqN62bcf19Lp78_52ewkFkncIuv4kj2GsWS_MM0VeTDGBXzAVu5eT9APZHo-nHKe6PT84vPuDRMR8P3HeNgXO9X1iCMqk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKEYIL4k2gwCDBCaImmcnM7AGh8qi29CEOrbS3YZJMAGlJSpNltfwofiP2JNnV8uit1x3vrjO2x3Y8_gzwLNe2LFDOYZli-Cas4mGmRjq0Vqm4SAkvhvqdD4_k-ER8mKSTDfg19MLQtcrhTPQHdVHn9I58m8c0I54qkq9Pv4c0NYqqq8MIjU4t9t1ijilb82rvHcr3eZLsvj9-Ow77qQJhnoq4DZEzumFV8jKxXFiLIUbGVS6FlrKIrRwV6HMLLXQWlbaIs1Qqi1TKUvN1EjmOv3sJLqPjjcii1EQt3-kQ2roWou_NibjeboQ_idARhh5XJZyv-T8_JuBfse3fVzT_qNN697d7A673cSvb6RTtJmy46hZc6SZZLm6D2WmpvTlsUOSONX7wBHMrrENWl8x6EjudLhjm-PX0hyvYx5bl0xmBNTSsJbeJnJA3ZR5wFP_QVT8X31xzB04uZJfvwmZVV-4-MJ5nVpap5QR0k2YY0AmRx06mZeRiXroA4mFHTd4Dm9NjTo0vsHNtOikYlILxUjDzAF4sv3PawXqcS_2GBLWkJEhu_0F99tn0Fm4k5mY8E9pFBaaYXGal5BhbS50om0RZHMDWIGbTnxONWWl1AE-Xy2jhVLaxlatnHQ2mQLhfAdzrtGLJCR9xzmOBK3pNX9ZYXV-pvn7xKOKYCHM5SnUALwfVWvH1_714cP5jPIGr4-PDA3Owd7T_EK4lpPlUw1NbsNmezdwjDOHa7LG3GwafLtpQfwPMSFfF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIgXxOcIDDASPEG0OHZs9wGhwag2BtMemNQ34yQ2IJVkLClV-dP467hzklblY297ra_txXfnu8v5fkfI00JbX4KcY59B-Cas4nGuRjq2VilWZogXg_3OH47k_ol4N8kmG-TX0AuD1yqHMzEc1GVd4DvyHc5wRnyoSPr-WsTx3vjV6fcYJ0hhpXUYp9GpyKFbzCF9a14e7IGsn6Xp-O3HN_txP2EgLjLB2hi4xNtWnvvUcmEthBs5V4UUWsqSWTkqwf-WWug88bZkeSaVBSplsRE7TRyH371ELiueMbQxNVHL9zuIvK6F6Pt0Eq53GhFOJXCKccBYiedrvjCMDPhXnPv3dc0_arbBFY5vkOt9DEt3O6W7STZcdYtc6aZaLm4Ts9tiq3PcgPgdbcIQCupWuIe09tQGEjudLijk-_X0hyvpcUuL6QyBGxraogsFTtCz0gA-Cn_oqp-Lb665Q04uZJfvks2qrtw9QnmRW-kzyxH0JsshuBOiYE5mPnGMexcRNuyoKXqQc3zMqQnFdq5NJwUDUjBBCmYekefL75x2EB_nUr9GQS0pEZ47fFCffTa9tRsJeRrPhXZJCekml7mXHOJsqVNl0yRnEdkexGz6M6MxKw2PyJPlMlg7lnBs5epZRwPpEOxXRLY6rVhywkeccyZgRa_pyxqr6yvV1y8BURySYi5HmY7Ii0G1Vnz9fy_un_8Yj8lVMFHz_uDo8AG5lqLiYzlPbZPN9mzmHkI01-aPgtlQ8umi7fQ33KNb-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomic-scale+strain+engineering+of+atomically+resolved+Pt+clusters+transcending+natural+enzymes&rft.jtitle=Nature+communications&rft.au=Chen%2C+Ke&rft.au=Li%2C+Guo&rft.au=Gong%2C+Xiaoqun&rft.au=Ren%2C+Qinjuan&rft.date=2024-09-27&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft_id=info:doi/10.1038%2Fs41467-024-52684-w&rft_id=info%3Apmid%2F39333142&rft.externalDocID=PMC11436958 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |