Atomic-scale strain engineering of atomically resolved Pt clusters transcending natural enzymes

Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt 1 ), several Pt atoms (Pt n...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 8346 - 18
Main Authors Chen, Ke, Li, Guo, Gong, Xiaoqun, Ren, Qinjuan, Wang, Junying, Zhao, Shuang, Liu, Ling, Yan, Yuxing, Liu, Qingshan, Cao, Yang, Ren, Yaoyao, Qin, Qiong, Xin, Qi, Liu, Shu-Lin, Yao, Peiyu, Zhang, Bo, Yang, Jingkai, Zhao, Ruoli, Li, Yuan, Luo, Ran, Fu, Yikai, Li, Yonghui, Long, Wei, Zhang, Shu, Dai, Haitao, Liu, Changlong, Zhang, Jianning, Chang, Jin, Mu, Xiaoyu, Zhang, Xiao-Dong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.09.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt 1 ), several Pt atoms (Pt n ) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the d -band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency ( K cat / K m ) of 1.50 × 10 9  mM −1  min −1 , about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder. Strain engineering is promising for improving catalytic capability of biocatalysts, but it is challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, the authors report the biocatalysts with atomically-resolved Pt clusters laminated on PdAu nanocrystals and show that the tensile strains contribute to the enzyme-like activities greater than that of natural enzymes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-52684-w