An attenuation field network for dedicated cone beam breast CT with short scan and offset detector geometry

The feasibility of full-scan, offset-detector geometry cone-beam CT has been demonstrated for several clinical applications. For full-scan acquisition with offset-detector geometry, data redundancy from complementary views can be exploited during image reconstruction. Envisioning an upright breast C...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; p. 319
Main Authors Fu, Zhiyang, Tseng, Hsin Wu, Vedantham, Srinivasan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.01.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The feasibility of full-scan, offset-detector geometry cone-beam CT has been demonstrated for several clinical applications. For full-scan acquisition with offset-detector geometry, data redundancy from complementary views can be exploited during image reconstruction. Envisioning an upright breast CT system, we propose to acquire short-scan data in conjunction with offset-detector geometry. To tackle the resulting incomplete data, we have developed a self-supervised attenuation field network (AFN). AFN leverages the inherent redundancy of cone-beam CT data through coordinate-based representation and known imaging physics. A trained AFN can query attenuation coefficients using their respective coordinates or synthesize projection data including the missing projections. The AFN was evaluated using clinical cone-beam breast CT datasets (n = 50). While conventional analytical and iterative reconstruction methods failed to reconstruct the incomplete data, AFN reconstruction was not statistically different from the reference reconstruction obtained using full-scan, full-detector data in terms of image noise, image contrast, and the full width at half maximum of calcifications. This study indicates the feasibility of a simultaneous short-scan and offset-detector geometry for dedicated breast CT imaging. The proposed AFN technique can potentially be expanded to other cone-beam CT applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-51077-1