General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian
The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 2848 - 10 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
18.05.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-learning framework to represent density functional theory (DFT) Hamiltonian as a function of material structure, which can naturally preserve the Euclidean symmetry even in the presence of spin–orbit coupling. Our DeepH-E3 method enables efficient electronic structure calculation at ab initio accuracy by learning from DFT data of small-sized structures, making the routine study of large-scale supercells (>10
4
atoms) feasible. The method can reach sub-meV prediction accuracy at high training efficiency, showing state-of-the-art performance in our experiments. The work is not only of general significance to deep-learning method development but also creates opportunities for materials research, such as building a Moiré-twisted material database.
Fundamental symmetries are crucial to the deep-learning modeling of physical systems. Here the authors use equivariant neural networks preserving the Euclidean symmetries to accelerate electronic structure calculations by orders of magnitude keeping sub-meV accuracy. |
---|---|
AbstractList | The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-learning framework to represent density functional theory (DFT) Hamiltonian as a function of material structure, which can naturally preserve the Euclidean symmetry even in the presence of spin–orbit coupling. Our DeepH-E3 method enables efficient electronic structure calculation at ab initio accuracy by learning from DFT data of small-sized structures, making the routine study of large-scale supercells (>10
4
atoms) feasible. The method can reach sub-meV prediction accuracy at high training efficiency, showing state-of-the-art performance in our experiments. The work is not only of general significance to deep-learning method development but also creates opportunities for materials research, such as building a Moiré-twisted material database. The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-learning framework to represent density functional theory (DFT) Hamiltonian as a function of material structure, which can naturally preserve the Euclidean symmetry even in the presence of spin–orbit coupling. Our DeepH-E3 method enables efficient electronic structure calculation at ab initio accuracy by learning from DFT data of small-sized structures, making the routine study of large-scale supercells (>10 4 atoms) feasible. The method can reach sub-meV prediction accuracy at high training efficiency, showing state-of-the-art performance in our experiments. The work is not only of general significance to deep-learning method development but also creates opportunities for materials research, such as building a Moiré-twisted material database. Fundamental symmetries are crucial to the deep-learning modeling of physical systems. Here the authors use equivariant neural networks preserving the Euclidean symmetries to accelerate electronic structure calculations by orders of magnitude keeping sub-meV accuracy. The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-learning framework to represent density functional theory (DFT) Hamiltonian as a function of material structure, which can naturally preserve the Euclidean symmetry even in the presence of spin-orbit coupling. Our DeepH-E3 method enables efficient electronic structure calculation at ab initio accuracy by learning from DFT data of small-sized structures, making the routine study of large-scale supercells (>10 atoms) feasible. The method can reach sub-meV prediction accuracy at high training efficiency, showing state-of-the-art performance in our experiments. The work is not only of general significance to deep-learning method development but also creates opportunities for materials research, such as building a Moiré-twisted material database. The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-learning framework to represent density functional theory (DFT) Hamiltonian as a function of material structure, which can naturally preserve the Euclidean symmetry even in the presence of spin-orbit coupling. Our DeepH-E3 method enables efficient electronic structure calculation at ab initio accuracy by learning from DFT data of small-sized structures, making the routine study of large-scale supercells (>104 atoms) feasible. The method can reach sub-meV prediction accuracy at high training efficiency, showing state-of-the-art performance in our experiments. The work is not only of general significance to deep-learning method development but also creates opportunities for materials research, such as building a Moiré-twisted material database.The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-learning framework to represent density functional theory (DFT) Hamiltonian as a function of material structure, which can naturally preserve the Euclidean symmetry even in the presence of spin-orbit coupling. Our DeepH-E3 method enables efficient electronic structure calculation at ab initio accuracy by learning from DFT data of small-sized structures, making the routine study of large-scale supercells (>104 atoms) feasible. The method can reach sub-meV prediction accuracy at high training efficiency, showing state-of-the-art performance in our experiments. The work is not only of general significance to deep-learning method development but also creates opportunities for materials research, such as building a Moiré-twisted material database. The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-learning framework to represent density functional theory (DFT) Hamiltonian as a function of material structure, which can naturally preserve the Euclidean symmetry even in the presence of spin–orbit coupling. Our DeepH-E3 method enables efficient electronic structure calculation at ab initio accuracy by learning from DFT data of small-sized structures, making the routine study of large-scale supercells (>104 atoms) feasible. The method can reach sub-meV prediction accuracy at high training efficiency, showing state-of-the-art performance in our experiments. The work is not only of general significance to deep-learning method development but also creates opportunities for materials research, such as building a Moiré-twisted material database.Fundamental symmetries are crucial to the deep-learning modeling of physical systems. Here the authors use equivariant neural networks preserving the Euclidean symmetries to accelerate electronic structure calculations by orders of magnitude keeping sub-meV accuracy. Abstract The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-learning framework to represent density functional theory (DFT) Hamiltonian as a function of material structure, which can naturally preserve the Euclidean symmetry even in the presence of spin–orbit coupling. Our DeepH-E3 method enables efficient electronic structure calculation at ab initio accuracy by learning from DFT data of small-sized structures, making the routine study of large-scale supercells (>104 atoms) feasible. The method can reach sub-meV prediction accuracy at high training efficiency, showing state-of-the-art performance in our experiments. The work is not only of general significance to deep-learning method development but also creates opportunities for materials research, such as building a Moiré-twisted material database. |
ArticleNumber | 2848 |
Author | Xu, Runzhang Li, He Zou, Nianlong Xu, Yong Duan, Wenhui Gong, Xiaoxun |
Author_xml | – sequence: 1 givenname: Xiaoxun orcidid: 0000-0002-6459-4288 surname: Gong fullname: Gong, Xiaoxun organization: State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, School of Physics, Peking University – sequence: 2 givenname: He orcidid: 0000-0002-5967-5251 surname: Li fullname: Li, He organization: State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Institute for Advanced Study, Tsinghua University, Tencent Quantum Laboratory, Tencent – sequence: 3 givenname: Nianlong surname: Zou fullname: Zou, Nianlong organization: State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University – sequence: 4 givenname: Runzhang surname: Xu fullname: Xu, Runzhang organization: State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University – sequence: 5 givenname: Wenhui orcidid: 0000-0001-9685-2547 surname: Duan fullname: Duan, Wenhui email: duanw@tsinghua.edu.cn organization: State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Institute for Advanced Study, Tsinghua University, Tencent Quantum Laboratory, Tencent, Frontier Science Center for Quantum Information – sequence: 6 givenname: Yong orcidid: 0000-0002-4844-2460 surname: Xu fullname: Xu, Yong email: yongxu@mail.tsinghua.edu.cn organization: State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Tencent Quantum Laboratory, Tencent, Frontier Science Center for Quantum Information, RIKEN Center for Emergent Matter Science (CEMS) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37208320$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhSNUREvpC7BAkdiURcB_cZwVQlVpK1ViA2vLsa-nHhJ7ajtF8_Z4Ji20XdQbW9ffOTq-vm-rAx88VNV7jD5jRMWXxDDjXYMIbahgXDTiVXVEEMMN7gg9eHQ-rE5SWqOyaI8FY2-qQ9oRJChBR9V0AR6iGmsb1QR_Qvxd2xDr81P6qYHb2d2p6JTPtYd5R3nIeybCJkICn1V2wdfB1gZ8cnlb29nrXa3A-QZC3NaXanJjDr74vKteWzUmOLnfj6tf389_nl021z8urs6-XTe6ZTg3uhusUoxAryy2BkHL0GCh03wYuCDWWIENUWBKUWOEmCVisL1uwYAC2tLj6mrxNUGt5Sa6ScWtDMrJfSHElVQxOz2C7BHrNBMIc8KYGVTPeqYVoEEbhilXxevr4rWZhwmMLo8unXhi-vTGuxu5CncSI9z3iO_SnN47xHA7Q8pycknDOCoPYU6SCMw7TmjPC_rxGboOcyzN3FOt4KQTrFAfHkf6l-XhWwsgFkDHkFIEK7VbvqokdGOJJndDJJchkmWI5H6IpChS8kz64P6iiC6iVGC_gvg_9guqvyEx3K4 |
CitedBy_id | crossref_primary_10_1063_5_0222557 crossref_primary_10_1063_5_0242683 crossref_primary_10_1088_2632_2153_ad8d30 crossref_primary_10_1063_5_0248228 crossref_primary_10_1088_0256_307X_42_2_027403 crossref_primary_10_1109_TED_2025_3533465 crossref_primary_10_1038_s41467_024_53748_7 crossref_primary_10_1021_acscentsci_3c01480 crossref_primary_10_1007_s44214_024_00055_3 crossref_primary_10_1038_s43588_024_00701_9 crossref_primary_10_1038_s43588_024_00747_9 crossref_primary_10_1103_PhysRevB_109_075112 crossref_primary_10_1038_s41524_025_01535_3 crossref_primary_10_1007_s10462_024_10874_4 crossref_primary_10_1103_PhysRevLett_132_096401 crossref_primary_10_1038_s43588_024_00668_7 crossref_primary_10_1103_PhysRevB_109_045153 crossref_primary_10_1002_adfm_202404392 crossref_primary_10_1093_bioadv_vbae099 crossref_primary_10_1021_acs_chemmater_4c01757 crossref_primary_10_1360_SSPMA_2024_0030 crossref_primary_10_1021_acs_jctc_4c01605 crossref_primary_10_1103_PhysRevLett_133_076401 crossref_primary_10_1103_PhysRevApplied_23_034066 crossref_primary_10_1063_5_0197757 crossref_primary_10_1002_aenm_202403876 crossref_primary_10_1088_2632_2153_ad7227 crossref_primary_10_1063_5_0223792 crossref_primary_10_1038_s43588_023_00424_3 crossref_primary_10_1038_s43588_023_00425_2 crossref_primary_10_1002_mgea_16 crossref_primary_10_1021_acs_jctc_4c01261 crossref_primary_10_1088_0256_307X_41_7_077103 crossref_primary_10_1002_jcc_27459 crossref_primary_10_1360_SSC_2024_0222 crossref_primary_10_1038_s41467_024_53028_4 crossref_primary_10_1016_j_scib_2024_06_011 crossref_primary_10_1063_5_0235541 crossref_primary_10_1038_s43588_024_00632_5 crossref_primary_10_1103_PhysRevB_110_104427 crossref_primary_10_1038_s41467_025_57328_1 crossref_primary_10_1038_s41467_024_52378_3 crossref_primary_10_1103_PhysRevB_110_235410 crossref_primary_10_1360_SSPMA_2024_0042 |
Cites_doi | 10.1143/JPSJ.74.1674 10.1103/PhysRevLett.120.143001 10.1063/1.2065267 10.1038/nature26154 10.1103/PhysRevB.50.17953 10.1021/acs.jctc.9b00181 10.1073/pnas.0505436102 10.1103/PhysRevB.59.1758 10.1063/5.0072784 10.1103/PhysRevLett.126.066401 10.1063/1.5019779 10.1038/s41467-022-29939-5 10.1038/s41467-019-12875-2 10.1088/0953-8984/24/16/165502 10.1103/PhysRevB.99.195419 10.1103/PhysRevB.54.11169 10.1103/PhysRevLett.78.1396 10.1073/pnas.2205221119 10.1103/PhysRevLett.98.146401 10.1038/s41524-019-0162-7 10.1103/PhysRevLett.120.145301 10.1038/s41524-022-00843-2 10.1039/C6SC05720A 10.1038/nature26160 10.1103/RevModPhys.89.015003 10.1038/s41467-021-27504-0 10.1038/s43588-022-00265-6 10.5281/zenodo.5292912 10.5281/zenodo.7553827 10.5281/zenodo.7553640 10.5281/zenodo.7553843 10.5281/zenodo.7554314 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-38468-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_9047c48016244dba9494cae0bcd4136a PMC10199065 37208320 10_1038_s41467_023_38468_8 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-c7bfaa42e9af1fd0e540bfe7c6bb682fdf81d2aedbfec1004f28bf9c5edeae353 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:32:52 EDT 2025 Thu Aug 21 18:37:00 EDT 2025 Tue Aug 05 10:41:29 EDT 2025 Wed Aug 13 08:09:07 EDT 2025 Wed Feb 19 02:02:35 EST 2025 Tue Jul 01 00:58:52 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Fri Feb 21 02:39:47 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-c7bfaa42e9af1fd0e540bfe7c6bb682fdf81d2aedbfec1004f28bf9c5edeae353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4844-2460 0000-0002-6459-4288 0000-0002-5967-5251 0000-0001-9685-2547 |
OpenAccessLink | https://doaj.org/article/9047c48016244dba9494cae0bcd4136a |
PMID | 37208320 |
PQID | 2815862784 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9047c48016244dba9494cae0bcd4136a pubmedcentral_primary_oai_pubmedcentral_nih_gov_10199065 proquest_miscellaneous_2816762396 proquest_journals_2815862784 pubmed_primary_37208320 crossref_citationtrail_10_1038_s41467_023_38468_8 crossref_primary_10_1038_s41467_023_38468_8 springer_journals_10_1038_s41467_023_38468_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-18 |
PublicationDateYYYYMMDD | 2023-05-18 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Hoshi, Yamamoto, Fujiwara, Sogabe, Zhang (CR37) 2012; 24 Cao (CR32) 2018; 556 CR19 Nigam, Willatt, Ceriotti (CR27) 2022; 156 CR39 CR16 CR14 CR13 Kresse, Furthmüller (CR42) 1996; 54 CR12 Becke, Johnson (CR46) 2005; 123 Schütt, Gastegger, Tkatchenko, Müller, Maurer (CR11) 2019; 10 Zhang (CR28) 2022; 8 CR31 CR30 Schütt, Sauceda, Kindermans, Tkatchenko, Müller (CR4) 2018; 148 Cao (CR33) 2018; 556 Li (CR25) 2022; 2 Fukui, Hatsugai, Suzuki (CR36) 2005; 74 Blöchl (CR44) 1994; 50 Unke (CR5) 2021; 12 Giustino (CR38) 2017; 89 Smith, Isayev, Roitberg (CR3) 2017; 8 Chandrasekaran (CR10) 2019; 5 Perdew, Burke, Ernzerhof (CR43) 1997; 78 CR6 CR8 Behler, Parrinello (CR1) 2007; 98 Batzner (CR7) 2022; 13 CR9 CR26 CR48 CR47 CR24 CR23 CR22 CR21 CR20 Qiao (CR15) 2022; 119 CR41 CR40 Prodan, Kohn (CR29) 2005; 102 Xie, Grossman (CR17) 2018; 120 Liu (CR34) 2021; 126 Lucignano, Alfè, Cataudella, Ninno, Cantele (CR35) 2019; 99 Kresse, Joubert (CR45) 1999; 59 Zhang, Han, Wang, Car, E (CR2) 2018; 120 Unke, Meuwly (CR18) 2019; 15 AD Becke (38468_CR46) 2005; 123 Y Cao (38468_CR32) 2018; 556 T Fukui (38468_CR36) 2005; 74 38468_CR31 38468_CR30 OT Unke (38468_CR18) 2019; 15 S Batzner (38468_CR7) 2022; 13 38468_CR13 38468_CR12 38468_CR26 Y Cao (38468_CR33) 2018; 556 38468_CR48 38468_CR47 38468_CR9 T Xie (38468_CR17) 2018; 120 KT Schütt (38468_CR4) 2018; 148 38468_CR8 38468_CR6 B Liu (38468_CR34) 2021; 126 E Prodan (38468_CR29) 2005; 102 JP Perdew (38468_CR43) 1997; 78 L Zhang (38468_CR2) 2018; 120 G Kresse (38468_CR42) 1996; 54 Z Qiao (38468_CR15) 2022; 119 KT Schütt (38468_CR11) 2019; 10 38468_CR40 38468_CR20 38468_CR41 38468_CR22 38468_CR21 38468_CR24 H Li (38468_CR25) 2022; 2 38468_CR23 J Behler (38468_CR1) 2007; 98 A Chandrasekaran (38468_CR10) 2019; 5 38468_CR14 38468_CR39 OT Unke (38468_CR5) 2021; 12 38468_CR16 38468_CR19 T Hoshi (38468_CR37) 2012; 24 G Kresse (38468_CR45) 1999; 59 P Lucignano (38468_CR35) 2019; 99 F Giustino (38468_CR38) 2017; 89 PE Blöchl (38468_CR44) 1994; 50 JS Smith (38468_CR3) 2017; 8 L Zhang (38468_CR28) 2022; 8 J Nigam (38468_CR27) 2022; 156 |
References_xml | – ident: CR22 – volume: 74 start-page: 1674 year: 2005 ident: CR36 article-title: Chern numbers in discretized Brillouin zone: efficient method of computing (spin) hall conductances publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.74.1674 – volume: 120 start-page: 143001 year: 2018 ident: CR2 article-title: Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.143001 – ident: CR47 – volume: 123 start-page: 154101 year: 2005 ident: CR46 article-title: A density-functional model of the dispersion interaction publication-title: J. Chem. Phys. doi: 10.1063/1.2065267 – ident: CR14 – ident: CR39 – ident: CR16 – ident: CR12 – ident: CR30 – volume: 556 start-page: 80 year: 2018 ident: CR32 article-title: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices publication-title: Nature doi: 10.1038/nature26154 – ident: CR6 – volume: 50 start-page: 17953 year: 1994 ident: CR44 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – ident: CR8 – volume: 15 start-page: 3678 year: 2019 ident: CR18 article-title: Physnet: a neural network for predicting energies, forces, dipole moments, and partial charges publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00181 – volume: 102 start-page: 11635 year: 2005 ident: CR29 article-title: Nearsightedness of electronic matter publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0505436102 – ident: CR40 – volume: 59 start-page: 1758 year: 1999 ident: CR45 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – ident: CR23 – volume: 156 start-page: 014115 year: 2022 ident: CR27 article-title: Equivariant representations for molecular Hamiltonians and -center atomic-scale properties publication-title: J. Chem. Phys. doi: 10.1063/5.0072784 – volume: 126 start-page: 066401 year: 2021 ident: CR34 article-title: Higher-order band topology in twisted Moiré superlattice publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.066401 – volume: 148 start-page: 241722 year: 2018 ident: CR4 article-title: SchNet—a deep learning architecture for molecules and materials publication-title: J. Chem. Phys. doi: 10.1063/1.5019779 – ident: CR21 – volume: 13 year: 2022 ident: CR7 article-title: E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials publication-title: Nat. Commun. doi: 10.1038/s41467-022-29939-5 – volume: 10 year: 2019 ident: CR11 article-title: Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions publication-title: Nat. Commun. doi: 10.1038/s41467-019-12875-2 – ident: CR19 – volume: 24 start-page: 165502 year: 2012 ident: CR37 article-title: An order- electronic structure theory with generalized eigenvalue equations and its application to a ten-million-atom system publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/24/16/165502 – ident: CR48 – volume: 99 start-page: 195419 year: 2019 ident: CR35 article-title: Crucial role of atomic corrugation on the flat bands and energy gaps of twisted bilayer graphene at the magic angle ~ 1.08 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.195419 – volume: 54 start-page: 11169 year: 1996 ident: CR42 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 78 start-page: 1396 year: 1997 ident: CR43 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1396 – volume: 119 start-page: e2205221119 year: 2022 ident: CR15 article-title: Informing geometric deep learning with electronic interactions to accelerate quantum chemistry publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2205221119 – volume: 98 start-page: 146401 year: 2007 ident: CR1 article-title: Generalized neural-network representation of high-dimensional potential-energy surfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.146401 – volume: 5 start-page: 22 year: 2019 ident: CR10 article-title: Solving the electronic structure problem with machine learning publication-title: NPJ Comput. Mater. doi: 10.1038/s41524-019-0162-7 – ident: CR31 – ident: CR13 – volume: 120 start-page: 145301 year: 2018 ident: CR17 article-title: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.145301 – volume: 8 start-page: 158 year: 2022 ident: CR28 article-title: Equivariant analytical mapping of first principles Hamiltonians to accurate and transferable materials models publication-title: NPJ Comput. Mater. doi: 10.1038/s41524-022-00843-2 – volume: 8 start-page: 3192 year: 2017 ident: CR3 article-title: ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost publication-title: Chem. Sci. doi: 10.1039/C6SC05720A – ident: CR9 – volume: 556 start-page: 43 year: 2018 ident: CR33 article-title: Unconventional superconductivity in magic-angle graphene superlattices publication-title: Nature doi: 10.1038/nature26160 – volume: 89 start-page: 015003 year: 2017 ident: CR38 article-title: Electron-phonon interactions from first principles publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.89.015003 – volume: 12 year: 2021 ident: CR5 article-title: Spookynet: learning force fields with electronic degrees of freedom and nonlocal effects publication-title: Nat. Commun. doi: 10.1038/s41467-021-27504-0 – ident: CR41 – ident: CR26 – ident: CR24 – volume: 2 start-page: 367 year: 2022 ident: CR25 article-title: Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation publication-title: Nat. Comput. Sci. doi: 10.1038/s43588-022-00265-6 – ident: CR20 – volume: 10 year: 2019 ident: 38468_CR11 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12875-2 – ident: 38468_CR16 – volume: 120 start-page: 145301 year: 2018 ident: 38468_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.145301 – volume: 556 start-page: 43 year: 2018 ident: 38468_CR33 publication-title: Nature doi: 10.1038/nature26160 – ident: 38468_CR22 – volume: 15 start-page: 3678 year: 2019 ident: 38468_CR18 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00181 – ident: 38468_CR20 – ident: 38468_CR12 – ident: 38468_CR14 – volume: 8 start-page: 3192 year: 2017 ident: 38468_CR3 publication-title: Chem. Sci. doi: 10.1039/C6SC05720A – volume: 12 year: 2021 ident: 38468_CR5 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27504-0 – volume: 13 year: 2022 ident: 38468_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29939-5 – volume: 59 start-page: 1758 year: 1999 ident: 38468_CR45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 78 start-page: 1396 year: 1997 ident: 38468_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1396 – ident: 38468_CR6 – volume: 123 start-page: 154101 year: 2005 ident: 38468_CR46 publication-title: J. Chem. Phys. doi: 10.1063/1.2065267 – ident: 38468_CR31 doi: 10.5281/zenodo.5292912 – ident: 38468_CR8 – volume: 24 start-page: 165502 year: 2012 ident: 38468_CR37 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/24/16/165502 – ident: 38468_CR40 doi: 10.5281/zenodo.7553827 – ident: 38468_CR26 – ident: 38468_CR24 – volume: 126 start-page: 066401 year: 2021 ident: 38468_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.066401 – ident: 38468_CR39 doi: 10.5281/zenodo.7553640 – volume: 99 start-page: 195419 year: 2019 ident: 38468_CR35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.195419 – ident: 38468_CR47 – ident: 38468_CR19 – volume: 74 start-page: 1674 year: 2005 ident: 38468_CR36 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.74.1674 – ident: 38468_CR41 doi: 10.5281/zenodo.7553843 – volume: 98 start-page: 146401 year: 2007 ident: 38468_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.146401 – volume: 156 start-page: 014115 year: 2022 ident: 38468_CR27 publication-title: J. Chem. Phys. doi: 10.1063/5.0072784 – volume: 119 start-page: e2205221119 year: 2022 ident: 38468_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2205221119 – ident: 38468_CR21 – volume: 2 start-page: 367 year: 2022 ident: 38468_CR25 publication-title: Nat. Comput. Sci. doi: 10.1038/s43588-022-00265-6 – ident: 38468_CR13 – volume: 50 start-page: 17953 year: 1994 ident: 38468_CR44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 5 start-page: 22 year: 2019 ident: 38468_CR10 publication-title: NPJ Comput. Mater. doi: 10.1038/s41524-019-0162-7 – ident: 38468_CR30 – volume: 102 start-page: 11635 year: 2005 ident: 38468_CR29 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0505436102 – volume: 54 start-page: 11169 year: 1996 ident: 38468_CR42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – ident: 38468_CR9 – volume: 8 start-page: 158 year: 2022 ident: 38468_CR28 publication-title: NPJ Comput. Mater. doi: 10.1038/s41524-022-00843-2 – volume: 556 start-page: 80 year: 2018 ident: 38468_CR32 publication-title: Nature doi: 10.1038/nature26154 – ident: 38468_CR23 – volume: 89 start-page: 015003 year: 2017 ident: 38468_CR38 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.89.015003 – ident: 38468_CR48 doi: 10.5281/zenodo.7554314 – volume: 148 start-page: 241722 year: 2018 ident: 38468_CR4 publication-title: J. Chem. Phys. doi: 10.1063/1.5019779 – volume: 120 start-page: 143001 year: 2018 ident: 38468_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.143001 |
SSID | ssj0000391844 |
Score | 2.668982 |
Snippet | The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural... Abstract The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2848 |
SubjectTerms | 639/301/1034/1037 639/301/1034/1038 639/705/117 639/766/119/995 Accuracy Deep learning Density functional theory Electronic structure Hamiltonian functions Humanities and Social Sciences multidisciplinary Neural networks Science Science (multidisciplinary) Spin-orbit interactions Structure-function relationships Symmetry |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJuUgozEAQRR83Ac54QAtVohwYlKe7P8hEqQtN3dSvvvmXGcVMuj18S78npe33pmvgF4JTynbGaRB8uLnAc0KWm8zDVxsfgQQt1Rc_KXr2Jxwj8vm2W6cFulssrJJ0ZH7QZLd-SHlSwbRN-t5O_PznOaGkXZ1TRC4ybcIuoyKulql-18x0Ls55Lz1CtT1PJwxaNnwECV15KajuROPIq0_f_Cmn-XTP6RN43h6Pge3E04kn0YBX8fbvj-AdweJ0tuH8KvRCfNwlR8xRCdsqPX9Zvcn29OL_EvMp4pIzpLXNWPxeAsUlxO7Ug9GwJzVOC-3jKKf-O1IYu9j1u2oKsRRI74PY_g5Pjo26dFniYr5Lbh5Tq3rQla88p3OpTBFR5xmwm-tcIYIavgAsLYSnuHDy1xyoVKmtDZxjuvfd3Uj2GvH3r_FFhly8Zb4V1lNPem7dqgOyO4Jiqv1pUZlNP5Kptox2n6xU8V09-1VKNMFMpERZkomcHb-TNnI-nGtas_ktjmlUSYHR8MF99Vsj_V4WYsUeUIxDPO6I533GpfGOswjAudwcEkdJWseKWudC6Dl_NrtD9KqujeD5u4RmBAqTuRwZNRR-ad0AQg9JhFBnJHe3a2uvumP_0ROb7RUyJOEE0G7yZFu9rX_89i__qf8QzuVKT7xD4rD2BvfbHxzxFUrc2LaDm_Abm0IoQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_OE8EX8dvqKRF8ULS6bdM0eRBRuWMRzicX7i0k6UQPzq63tyvuf-9M2q6srj752iYlzEfml2bmNwBPFEq-zZzkMchJLiO5lPaoc8dcLBhjrAwXJx9_VNOZ_HBSn-zB2O5oEODFzqMd95OaLc5e_jhfvyGHf92XjOtXFzK5O0WfvNJcSaQvwWWKTA076vEA99POXBk60Mihdmb31K34lGj8d2HPP1Mof7tHTeHp6DpcG3CleNsbwg3Yw-4mXOk7Ta5vwdeBXlrEMRlLEFoVh0-rZzmer06_05GZZCyY3pJGdX1yuEiUl2N5UifmUbSc8L5cC46H_W9EkWoh12LKv0oISdJ3bsPs6PDT-2k-dFrIQy2LZR4aH52TJRoXi9hOkHCcj9gE5b3SZWwjwdrSYUsPA3PMxVL7aEKNLTqs6uoO7HfzDu-BKENRY1DYlt5J9I1pojNeScfUXk1bZFCM8rVhoCHnbhhnNl2HV9r2OrGkE5t0YnUGzzdzvvUkHP8c_Y7VthnJBNrpwXzx2Q7-aA0tJjB1jiJ803pnpJHB4cSHlsK6chkcjEq3o1HaUhc1nQAbLTN4vHlN_siXLK7D-SqNURRgKqMyuNvbyGYl3BGIdtBJBnrLeraWuv2mO_2SOL9p5yTcoOoMXoyG9mtdf5fF_f8hiwdwtWQP4TRPcwD7y8UKHxIUW_pHyb9-AjpOMno priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEC7WFcGL-LbXVSJ4ULSxH-l0-qjDLoOgJxf2FvKo6IL26O7Mwvx7q9IPGV0Fr92VpkhVpb5Oqr4APFco-TSzyKOXRS4jhZR2qHPLXCwYY6w7bk7-8FEtT-T70-Z0D6qpFyYV7SdKy7RMT9Vhby5kCmnKMHmtuVtIX4PrTN3OXr1Qi3lfhRnPtZRjf0xR6yuG7uSgRNV_Fb78s0zyt7PSlIKOb8OtETuKt4O2d2AP-7twY7hNcnsPvo0U0iJOBVeCEKk4elG_zPHH5uySfotpHgVTWJJUPxSAi0RrObUg9WIVReCi9vVWcM4btgpF6nfciiVvhxBapO_ch5Pjo0-LZT7eppD7Rpbr3LcuWisr7GwsYyiQsJqL2HrlnNJVDJGga2Ux0EPPPHKx0i52vsGAFuumfgD7_arHRyAqXzboFYbKWYmu7dpoO6ekZfquNpQZlNP8Gj9SjfONF19NOvKutRlsYsgmJtnE6AxezWO-D0Qb_5R-x2abJZkkOz1YnX82o9OYjpTxTI-jCMMEZzvZSW-xcD5Q6lY2g8PJ6GaM3AtT6bKhv7xWywyeza8p5vggxfa42iQZRUmk7lQGDwcfmTXhW39olSwy0Dves6Pq7pv-7Evi9abVkbCBajJ4PTnaL73-PhcH_yf-GG5WHAvMQKsPYX99vsEnBKzW7mmKpJ8vgCBS priority: 102 providerName: Springer Nature |
Title | General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian |
URI | https://link.springer.com/article/10.1038/s41467-023-38468-8 https://www.ncbi.nlm.nih.gov/pubmed/37208320 https://www.proquest.com/docview/2815862784 https://www.proquest.com/docview/2816762396 https://pubmed.ncbi.nlm.nih.gov/PMC10199065 https://doaj.org/article/9047c48016244dba9494cae0bcd4136a |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_0RPBF_LZ6LhF8ULRcP9I0edxbdl0W7hD1YN9CkiZ4oF31doX9751J2_XWzxdfWkjTEuY7zcxvAJ4Jz-k0M0uD41nKA6qUtF6mhrBYfAihVFScfHIq5md8sayWl1p9UU5YBw_cEe5IZbx2hHEi0BE11iiuuDM-s65B-ytiaIQ-79JmKtrgUuHWhfdVMlkpjy54tAnootJSUrmR3PNEEbD_d1Hmr8mSP52YRkc0uwU3-wiSjbuV34Yrvr0D17uektu78KkHkmZhSLtiGJey6fPyReq_bM6_4eYYqckIyBJntV0aOIvglkMhUstWgTWU2r7eMvJ83Q9DFqset2xOP0UwZsTv3IOz2fT9ZJ72PRVSV_F8nbraBmN44ZUJeWgyjxGbDb52wlohi9AEDGAL4xscdIQmFwppg3KVb7zxZVXeh4N21fqHwAqXV94J3xTWcG9rVQejrOCGQLzqJk8gH-irXQ84Tn0vPup48F1K3fFEI0905ImWCbzcvfO5g9v46-xjYttuJkFlxwEUIN0LkP6XACVwODBd9_p7oQuZV7jXqyVP4OnuMWoeHaeY1q82cY5AV1IqkcCDTkZ2K6HeP2grswTknvTsLXX_SXv-IaJ7o43ECEFUCbwaBO3Huv5Mi0f_gxaP4UZBGkLotPIQDtZfN_4JBl1rO4Kr9bLGq5y9HsG18XjxboH34-npm7c4OhGTUdRAvJ5w-R1l0zE5 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB5VRQheKu4GChgJJBBEzeE4zgNCHK229HhqpX0ztmNDpZJtu7ug_VP8Rmaco1qOvvU1cSLHc33xeL4BeC4cp2xmEnvLk5h7NClpnIw1cbE4731eUXHy_oEYHfHP42K8Ar_6Whg6Vtn7xOCo64mlPfLNTKYFou9S8nenZzF1jaLsat9Co1WLXbf4ib9s07c7n1C-L7Jse-vw4yjuugrEtuDpLLal8VrzzFXap75OHGIW411phTFCZr72COEy7Wq8aIlPzWfS-MoWrnbahS4R6PKvYeBNyKLKcTns6RDbuuS8q81Jcrk55cETYWCMc0lFTnIp_oU2Af_Ctn8f0fwjTxvC3_YtWOtwK3vfKtptWHHNHbjedrJc3IXvHX018_1hL4ZomG29zF_F7mx-_AN_yVGGjOgzcVTTHj5ngVKzL39q2MSzmg7UzxaM4m27TclCreWCjWgrBpEqvuceHF3Jmt-H1WbSuHVgmU0LZ4WrM6O5M2VVel0ZwTVRh5V1GkHar6-yHc05dds4USHdnkvVykShTFSQiZIRvB6eOW1JPi4d_YHENowkgu5wYXL-VXX2riqcjCVqHoH4qTa64hW32iXG1ggbhI5goxe66rzGVF3oeATPhtto75TE0Y2bzMMYgQEsr0QED1odGWZCHYfQQycRyCXtWZrq8p3m-FvgFEfPjLhEFBG86RXtYl7_X4uHl3_GU7gxOtzfU3s7B7uP4GZGdkDMt3IDVmfnc_cYAd3MPAlWxODLVZvtb-3pY-0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRSAuiDeBAkYCCQTR5uE4zgEhoF1tKVQcqLQ3Yzs2VIKk7e6C9q_x65hxkq2WR2-9Jk7keB7-4pn5BuCxcJyimUnsLU9i7tGkpHEy1sTF4rz3eUXFyR_2xeSAv5sW0w34NdTCUFrl4BODo65bS2fko0ymBaLvUvKR79MiPm6PXx0dx9RBiiKtQzuNTkX23PIn_r7NXu5uo6yfZNl459PbSdx3GIhtwdN5bEvjteaZq7RPfZ04xC_Gu9IKY4TMfO0RzmXa1XjREreaz6TxlS1c7bQLHSPQ_V8o8yIlGyun5ep8h5jXJed9nU6Sy9GMB6-Em2ScSyp4kmt7YWgZ8C-c-3e65h8x27AVjq_ClR7Dsted0l2DDddch4tdV8vlDfjeU1kzPyR-MUTGbOdp_ix2x4vDH_h7jvJkRKWJo5ouEZ0Fes2hFKphrWc1JdfPl4z23u7IkoW6yyWb0LEMolZ8z004OJc1vwWbTdu4O8AymxbOCldnRnNnyqr0ujKCa6IRK-s0gnRYX2V7ynPqvPFNhdB7LlUnE4UyUUEmSkbwfPXMUUf4ceboNyS21Ugi6w4X2pMvqrd9VeFkLNH0CMRStdEVr7jVLjG2RgghdARbg9BV70Fm6lTfI3i0uo22TwEd3bh2EcYI3MzySkRwu9OR1Uyo-xB66yQCuaY9a1Ndv9Mcfg384uilEaOIIoIXg6Kdzuv_a3H37M94CJfQYNX73f29e3A5IzMgEly5BZvzk4W7j9hubh4EI2Lw-byt9jc25Ggj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=General+framework+for+E%283%29-equivariant+neural+network+representation+of+density+functional+theory+Hamiltonian&rft.jtitle=Nature+communications&rft.au=Xiaoxun+Gong&rft.au=He+Li&rft.au=Nianlong+Zou&rft.au=Runzhang+Xu&rft.date=2023-05-18&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41467-023-38468-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9047c48016244dba9494cae0bcd4136a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |