General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian

The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 2848 - 10
Main Authors Gong, Xiaoxun, Li, He, Zou, Nianlong, Xu, Runzhang, Duan, Wenhui, Xu, Yong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.05.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-learning framework to represent density functional theory (DFT) Hamiltonian as a function of material structure, which can naturally preserve the Euclidean symmetry even in the presence of spin–orbit coupling. Our DeepH-E3 method enables efficient electronic structure calculation at ab initio accuracy by learning from DFT data of small-sized structures, making the routine study of large-scale supercells (>10 4 atoms) feasible. The method can reach sub-meV prediction accuracy at high training efficiency, showing state-of-the-art performance in our experiments. The work is not only of general significance to deep-learning method development but also creates opportunities for materials research, such as building a Moiré-twisted material database. Fundamental symmetries are crucial to the deep-learning modeling of physical systems. Here the authors use equivariant neural networks preserving the Euclidean symmetries to accelerate electronic structure calculations by orders of magnitude keeping sub-meV accuracy.
AbstractList The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-learning framework to represent density functional theory (DFT) Hamiltonian as a function of material structure, which can naturally preserve the Euclidean symmetry even in the presence of spin–orbit coupling. Our DeepH-E3 method enables efficient electronic structure calculation at ab initio accuracy by learning from DFT data of small-sized structures, making the routine study of large-scale supercells (>10 4 atoms) feasible. The method can reach sub-meV prediction accuracy at high training efficiency, showing state-of-the-art performance in our experiments. The work is not only of general significance to deep-learning method development but also creates opportunities for materials research, such as building a Moiré-twisted material database.
The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-learning framework to represent density functional theory (DFT) Hamiltonian as a function of material structure, which can naturally preserve the Euclidean symmetry even in the presence of spin–orbit coupling. Our DeepH-E3 method enables efficient electronic structure calculation at ab initio accuracy by learning from DFT data of small-sized structures, making the routine study of large-scale supercells (>10 4 atoms) feasible. The method can reach sub-meV prediction accuracy at high training efficiency, showing state-of-the-art performance in our experiments. The work is not only of general significance to deep-learning method development but also creates opportunities for materials research, such as building a Moiré-twisted material database. Fundamental symmetries are crucial to the deep-learning modeling of physical systems. Here the authors use equivariant neural networks preserving the Euclidean symmetries to accelerate electronic structure calculations by orders of magnitude keeping sub-meV accuracy.
The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-learning framework to represent density functional theory (DFT) Hamiltonian as a function of material structure, which can naturally preserve the Euclidean symmetry even in the presence of spin-orbit coupling. Our DeepH-E3 method enables efficient electronic structure calculation at ab initio accuracy by learning from DFT data of small-sized structures, making the routine study of large-scale supercells (>10 atoms) feasible. The method can reach sub-meV prediction accuracy at high training efficiency, showing state-of-the-art performance in our experiments. The work is not only of general significance to deep-learning method development but also creates opportunities for materials research, such as building a Moiré-twisted material database.
The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-learning framework to represent density functional theory (DFT) Hamiltonian as a function of material structure, which can naturally preserve the Euclidean symmetry even in the presence of spin-orbit coupling. Our DeepH-E3 method enables efficient electronic structure calculation at ab initio accuracy by learning from DFT data of small-sized structures, making the routine study of large-scale supercells (>104 atoms) feasible. The method can reach sub-meV prediction accuracy at high training efficiency, showing state-of-the-art performance in our experiments. The work is not only of general significance to deep-learning method development but also creates opportunities for materials research, such as building a Moiré-twisted material database.The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-learning framework to represent density functional theory (DFT) Hamiltonian as a function of material structure, which can naturally preserve the Euclidean symmetry even in the presence of spin-orbit coupling. Our DeepH-E3 method enables efficient electronic structure calculation at ab initio accuracy by learning from DFT data of small-sized structures, making the routine study of large-scale supercells (>104 atoms) feasible. The method can reach sub-meV prediction accuracy at high training efficiency, showing state-of-the-art performance in our experiments. The work is not only of general significance to deep-learning method development but also creates opportunities for materials research, such as building a Moiré-twisted material database.
The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-learning framework to represent density functional theory (DFT) Hamiltonian as a function of material structure, which can naturally preserve the Euclidean symmetry even in the presence of spin–orbit coupling. Our DeepH-E3 method enables efficient electronic structure calculation at ab initio accuracy by learning from DFT data of small-sized structures, making the routine study of large-scale supercells (>104 atoms) feasible. The method can reach sub-meV prediction accuracy at high training efficiency, showing state-of-the-art performance in our experiments. The work is not only of general significance to deep-learning method development but also creates opportunities for materials research, such as building a Moiré-twisted material database.Fundamental symmetries are crucial to the deep-learning modeling of physical systems. Here the authors use equivariant neural networks preserving the Euclidean symmetries to accelerate electronic structure calculations by orders of magnitude keeping sub-meV accuracy.
Abstract The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-learning framework to represent density functional theory (DFT) Hamiltonian as a function of material structure, which can naturally preserve the Euclidean symmetry even in the presence of spin–orbit coupling. Our DeepH-E3 method enables efficient electronic structure calculation at ab initio accuracy by learning from DFT data of small-sized structures, making the routine study of large-scale supercells (>104 atoms) feasible. The method can reach sub-meV prediction accuracy at high training efficiency, showing state-of-the-art performance in our experiments. The work is not only of general significance to deep-learning method development but also creates opportunities for materials research, such as building a Moiré-twisted material database.
ArticleNumber 2848
Author Xu, Runzhang
Li, He
Zou, Nianlong
Xu, Yong
Duan, Wenhui
Gong, Xiaoxun
Author_xml – sequence: 1
  givenname: Xiaoxun
  orcidid: 0000-0002-6459-4288
  surname: Gong
  fullname: Gong, Xiaoxun
  organization: State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, School of Physics, Peking University
– sequence: 2
  givenname: He
  orcidid: 0000-0002-5967-5251
  surname: Li
  fullname: Li, He
  organization: State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Institute for Advanced Study, Tsinghua University, Tencent Quantum Laboratory, Tencent
– sequence: 3
  givenname: Nianlong
  surname: Zou
  fullname: Zou, Nianlong
  organization: State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University
– sequence: 4
  givenname: Runzhang
  surname: Xu
  fullname: Xu, Runzhang
  organization: State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University
– sequence: 5
  givenname: Wenhui
  orcidid: 0000-0001-9685-2547
  surname: Duan
  fullname: Duan, Wenhui
  email: duanw@tsinghua.edu.cn
  organization: State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Institute for Advanced Study, Tsinghua University, Tencent Quantum Laboratory, Tencent, Frontier Science Center for Quantum Information
– sequence: 6
  givenname: Yong
  orcidid: 0000-0002-4844-2460
  surname: Xu
  fullname: Xu, Yong
  email: yongxu@mail.tsinghua.edu.cn
  organization: State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Tencent Quantum Laboratory, Tencent, Frontier Science Center for Quantum Information, RIKEN Center for Emergent Matter Science (CEMS)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37208320$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNUREvpC7BAkdiURcB_cZwVQlVpK1ViA2vLsa-nHhJ7ajtF8_Z4Ji20XdQbW9ffOTq-vm-rAx88VNV7jD5jRMWXxDDjXYMIbahgXDTiVXVEEMMN7gg9eHQ-rE5SWqOyaI8FY2-qQ9oRJChBR9V0AR6iGmsb1QR_Qvxd2xDr81P6qYHb2d2p6JTPtYd5R3nIeybCJkICn1V2wdfB1gZ8cnlb29nrXa3A-QZC3NaXanJjDr74vKteWzUmOLnfj6tf389_nl021z8urs6-XTe6ZTg3uhusUoxAryy2BkHL0GCh03wYuCDWWIENUWBKUWOEmCVisL1uwYAC2tLj6mrxNUGt5Sa6ScWtDMrJfSHElVQxOz2C7BHrNBMIc8KYGVTPeqYVoEEbhilXxevr4rWZhwmMLo8unXhi-vTGuxu5CncSI9z3iO_SnN47xHA7Q8pycknDOCoPYU6SCMw7TmjPC_rxGboOcyzN3FOt4KQTrFAfHkf6l-XhWwsgFkDHkFIEK7VbvqokdGOJJndDJJchkmWI5H6IpChS8kz64P6iiC6iVGC_gvg_9guqvyEx3K4
CitedBy_id crossref_primary_10_1063_5_0222557
crossref_primary_10_1063_5_0242683
crossref_primary_10_1088_2632_2153_ad8d30
crossref_primary_10_1063_5_0248228
crossref_primary_10_1088_0256_307X_42_2_027403
crossref_primary_10_1109_TED_2025_3533465
crossref_primary_10_1038_s41467_024_53748_7
crossref_primary_10_1021_acscentsci_3c01480
crossref_primary_10_1007_s44214_024_00055_3
crossref_primary_10_1038_s43588_024_00701_9
crossref_primary_10_1038_s43588_024_00747_9
crossref_primary_10_1103_PhysRevB_109_075112
crossref_primary_10_1038_s41524_025_01535_3
crossref_primary_10_1007_s10462_024_10874_4
crossref_primary_10_1103_PhysRevLett_132_096401
crossref_primary_10_1038_s43588_024_00668_7
crossref_primary_10_1103_PhysRevB_109_045153
crossref_primary_10_1002_adfm_202404392
crossref_primary_10_1093_bioadv_vbae099
crossref_primary_10_1021_acs_chemmater_4c01757
crossref_primary_10_1360_SSPMA_2024_0030
crossref_primary_10_1021_acs_jctc_4c01605
crossref_primary_10_1103_PhysRevLett_133_076401
crossref_primary_10_1103_PhysRevApplied_23_034066
crossref_primary_10_1063_5_0197757
crossref_primary_10_1002_aenm_202403876
crossref_primary_10_1088_2632_2153_ad7227
crossref_primary_10_1063_5_0223792
crossref_primary_10_1038_s43588_023_00424_3
crossref_primary_10_1038_s43588_023_00425_2
crossref_primary_10_1002_mgea_16
crossref_primary_10_1021_acs_jctc_4c01261
crossref_primary_10_1088_0256_307X_41_7_077103
crossref_primary_10_1002_jcc_27459
crossref_primary_10_1360_SSC_2024_0222
crossref_primary_10_1038_s41467_024_53028_4
crossref_primary_10_1016_j_scib_2024_06_011
crossref_primary_10_1063_5_0235541
crossref_primary_10_1038_s43588_024_00632_5
crossref_primary_10_1103_PhysRevB_110_104427
crossref_primary_10_1038_s41467_025_57328_1
crossref_primary_10_1038_s41467_024_52378_3
crossref_primary_10_1103_PhysRevB_110_235410
crossref_primary_10_1360_SSPMA_2024_0042
Cites_doi 10.1143/JPSJ.74.1674
10.1103/PhysRevLett.120.143001
10.1063/1.2065267
10.1038/nature26154
10.1103/PhysRevB.50.17953
10.1021/acs.jctc.9b00181
10.1073/pnas.0505436102
10.1103/PhysRevB.59.1758
10.1063/5.0072784
10.1103/PhysRevLett.126.066401
10.1063/1.5019779
10.1038/s41467-022-29939-5
10.1038/s41467-019-12875-2
10.1088/0953-8984/24/16/165502
10.1103/PhysRevB.99.195419
10.1103/PhysRevB.54.11169
10.1103/PhysRevLett.78.1396
10.1073/pnas.2205221119
10.1103/PhysRevLett.98.146401
10.1038/s41524-019-0162-7
10.1103/PhysRevLett.120.145301
10.1038/s41524-022-00843-2
10.1039/C6SC05720A
10.1038/nature26160
10.1103/RevModPhys.89.015003
10.1038/s41467-021-27504-0
10.1038/s43588-022-00265-6
10.5281/zenodo.5292912
10.5281/zenodo.7553827
10.5281/zenodo.7553640
10.5281/zenodo.7553843
10.5281/zenodo.7554314
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-38468-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
MEDLINE - Academic

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_9047c48016244dba9494cae0bcd4136a
PMC10199065
37208320
10_1038_s41467_023_38468_8
Genre Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-c7bfaa42e9af1fd0e540bfe7c6bb682fdf81d2aedbfec1004f28bf9c5edeae353
IEDL.DBID DOA
ISSN 2041-1723
IngestDate Wed Aug 27 01:32:52 EDT 2025
Thu Aug 21 18:37:00 EDT 2025
Tue Aug 05 10:41:29 EDT 2025
Wed Aug 13 08:09:07 EDT 2025
Wed Feb 19 02:02:35 EST 2025
Tue Jul 01 00:58:52 EDT 2025
Thu Apr 24 23:02:29 EDT 2025
Fri Feb 21 02:39:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-c7bfaa42e9af1fd0e540bfe7c6bb682fdf81d2aedbfec1004f28bf9c5edeae353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4844-2460
0000-0002-6459-4288
0000-0002-5967-5251
0000-0001-9685-2547
OpenAccessLink https://doaj.org/article/9047c48016244dba9494cae0bcd4136a
PMID 37208320
PQID 2815862784
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_9047c48016244dba9494cae0bcd4136a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10199065
proquest_miscellaneous_2816762396
proquest_journals_2815862784
pubmed_primary_37208320
crossref_citationtrail_10_1038_s41467_023_38468_8
crossref_primary_10_1038_s41467_023_38468_8
springer_journals_10_1038_s41467_023_38468_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-18
PublicationDateYYYYMMDD 2023-05-18
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Hoshi, Yamamoto, Fujiwara, Sogabe, Zhang (CR37) 2012; 24
Cao (CR32) 2018; 556
CR19
Nigam, Willatt, Ceriotti (CR27) 2022; 156
CR39
CR16
CR14
CR13
Kresse, Furthmüller (CR42) 1996; 54
CR12
Becke, Johnson (CR46) 2005; 123
Schütt, Gastegger, Tkatchenko, Müller, Maurer (CR11) 2019; 10
Zhang (CR28) 2022; 8
CR31
CR30
Schütt, Sauceda, Kindermans, Tkatchenko, Müller (CR4) 2018; 148
Cao (CR33) 2018; 556
Li (CR25) 2022; 2
Fukui, Hatsugai, Suzuki (CR36) 2005; 74
Blöchl (CR44) 1994; 50
Unke (CR5) 2021; 12
Giustino (CR38) 2017; 89
Smith, Isayev, Roitberg (CR3) 2017; 8
Chandrasekaran (CR10) 2019; 5
Perdew, Burke, Ernzerhof (CR43) 1997; 78
CR6
CR8
Behler, Parrinello (CR1) 2007; 98
Batzner (CR7) 2022; 13
CR9
CR26
CR48
CR47
CR24
CR23
CR22
CR21
CR20
Qiao (CR15) 2022; 119
CR41
CR40
Prodan, Kohn (CR29) 2005; 102
Xie, Grossman (CR17) 2018; 120
Liu (CR34) 2021; 126
Lucignano, Alfè, Cataudella, Ninno, Cantele (CR35) 2019; 99
Kresse, Joubert (CR45) 1999; 59
Zhang, Han, Wang, Car, E (CR2) 2018; 120
Unke, Meuwly (CR18) 2019; 15
AD Becke (38468_CR46) 2005; 123
Y Cao (38468_CR32) 2018; 556
T Fukui (38468_CR36) 2005; 74
38468_CR31
38468_CR30
OT Unke (38468_CR18) 2019; 15
S Batzner (38468_CR7) 2022; 13
38468_CR13
38468_CR12
38468_CR26
Y Cao (38468_CR33) 2018; 556
38468_CR48
38468_CR47
38468_CR9
T Xie (38468_CR17) 2018; 120
KT Schütt (38468_CR4) 2018; 148
38468_CR8
38468_CR6
B Liu (38468_CR34) 2021; 126
E Prodan (38468_CR29) 2005; 102
JP Perdew (38468_CR43) 1997; 78
L Zhang (38468_CR2) 2018; 120
G Kresse (38468_CR42) 1996; 54
Z Qiao (38468_CR15) 2022; 119
KT Schütt (38468_CR11) 2019; 10
38468_CR40
38468_CR20
38468_CR41
38468_CR22
38468_CR21
38468_CR24
H Li (38468_CR25) 2022; 2
38468_CR23
J Behler (38468_CR1) 2007; 98
A Chandrasekaran (38468_CR10) 2019; 5
38468_CR14
38468_CR39
OT Unke (38468_CR5) 2021; 12
38468_CR16
38468_CR19
T Hoshi (38468_CR37) 2012; 24
G Kresse (38468_CR45) 1999; 59
P Lucignano (38468_CR35) 2019; 99
F Giustino (38468_CR38) 2017; 89
PE Blöchl (38468_CR44) 1994; 50
JS Smith (38468_CR3) 2017; 8
L Zhang (38468_CR28) 2022; 8
J Nigam (38468_CR27) 2022; 156
References_xml – ident: CR22
– volume: 74
  start-page: 1674
  year: 2005
  ident: CR36
  article-title: Chern numbers in discretized Brillouin zone: efficient method of computing (spin) hall conductances
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.74.1674
– volume: 120
  start-page: 143001
  year: 2018
  ident: CR2
  article-title: Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.143001
– ident: CR47
– volume: 123
  start-page: 154101
  year: 2005
  ident: CR46
  article-title: A density-functional model of the dispersion interaction
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2065267
– ident: CR14
– ident: CR39
– ident: CR16
– ident: CR12
– ident: CR30
– volume: 556
  start-page: 80
  year: 2018
  ident: CR32
  article-title: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
  publication-title: Nature
  doi: 10.1038/nature26154
– ident: CR6
– volume: 50
  start-page: 17953
  year: 1994
  ident: CR44
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– ident: CR8
– volume: 15
  start-page: 3678
  year: 2019
  ident: CR18
  article-title: Physnet: a neural network for predicting energies, forces, dipole moments, and partial charges
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b00181
– volume: 102
  start-page: 11635
  year: 2005
  ident: CR29
  article-title: Nearsightedness of electronic matter
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0505436102
– ident: CR40
– volume: 59
  start-page: 1758
  year: 1999
  ident: CR45
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– ident: CR23
– volume: 156
  start-page: 014115
  year: 2022
  ident: CR27
  article-title: Equivariant representations for molecular Hamiltonians and -center atomic-scale properties
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0072784
– volume: 126
  start-page: 066401
  year: 2021
  ident: CR34
  article-title: Higher-order band topology in twisted Moiré superlattice
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.066401
– volume: 148
  start-page: 241722
  year: 2018
  ident: CR4
  article-title: SchNet—a deep learning architecture for molecules and materials
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5019779
– ident: CR21
– volume: 13
  year: 2022
  ident: CR7
  article-title: E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29939-5
– volume: 10
  year: 2019
  ident: CR11
  article-title: Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12875-2
– ident: CR19
– volume: 24
  start-page: 165502
  year: 2012
  ident: CR37
  article-title: An order- electronic structure theory with generalized eigenvalue equations and its application to a ten-million-atom system
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/24/16/165502
– ident: CR48
– volume: 99
  start-page: 195419
  year: 2019
  ident: CR35
  article-title: Crucial role of atomic corrugation on the flat bands and energy gaps of twisted bilayer graphene at the magic angle  ~ 1.08
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.195419
– volume: 54
  start-page: 11169
  year: 1996
  ident: CR42
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 78
  start-page: 1396
  year: 1997
  ident: CR43
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1396
– volume: 119
  start-page: e2205221119
  year: 2022
  ident: CR15
  article-title: Informing geometric deep learning with electronic interactions to accelerate quantum chemistry
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2205221119
– volume: 98
  start-page: 146401
  year: 2007
  ident: CR1
  article-title: Generalized neural-network representation of high-dimensional potential-energy surfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.146401
– volume: 5
  start-page: 22
  year: 2019
  ident: CR10
  article-title: Solving the electronic structure problem with machine learning
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/s41524-019-0162-7
– ident: CR31
– ident: CR13
– volume: 120
  start-page: 145301
  year: 2018
  ident: CR17
  article-title: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.145301
– volume: 8
  start-page: 158
  year: 2022
  ident: CR28
  article-title: Equivariant analytical mapping of first principles Hamiltonians to accurate and transferable materials models
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/s41524-022-00843-2
– volume: 8
  start-page: 3192
  year: 2017
  ident: CR3
  article-title: ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC05720A
– ident: CR9
– volume: 556
  start-page: 43
  year: 2018
  ident: CR33
  article-title: Unconventional superconductivity in magic-angle graphene superlattices
  publication-title: Nature
  doi: 10.1038/nature26160
– volume: 89
  start-page: 015003
  year: 2017
  ident: CR38
  article-title: Electron-phonon interactions from first principles
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.89.015003
– volume: 12
  year: 2021
  ident: CR5
  article-title: Spookynet: learning force fields with electronic degrees of freedom and nonlocal effects
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27504-0
– ident: CR41
– ident: CR26
– ident: CR24
– volume: 2
  start-page: 367
  year: 2022
  ident: CR25
  article-title: Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-022-00265-6
– ident: CR20
– volume: 10
  year: 2019
  ident: 38468_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12875-2
– ident: 38468_CR16
– volume: 120
  start-page: 145301
  year: 2018
  ident: 38468_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.145301
– volume: 556
  start-page: 43
  year: 2018
  ident: 38468_CR33
  publication-title: Nature
  doi: 10.1038/nature26160
– ident: 38468_CR22
– volume: 15
  start-page: 3678
  year: 2019
  ident: 38468_CR18
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b00181
– ident: 38468_CR20
– ident: 38468_CR12
– ident: 38468_CR14
– volume: 8
  start-page: 3192
  year: 2017
  ident: 38468_CR3
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC05720A
– volume: 12
  year: 2021
  ident: 38468_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27504-0
– volume: 13
  year: 2022
  ident: 38468_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29939-5
– volume: 59
  start-page: 1758
  year: 1999
  ident: 38468_CR45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 78
  start-page: 1396
  year: 1997
  ident: 38468_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1396
– ident: 38468_CR6
– volume: 123
  start-page: 154101
  year: 2005
  ident: 38468_CR46
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2065267
– ident: 38468_CR31
  doi: 10.5281/zenodo.5292912
– ident: 38468_CR8
– volume: 24
  start-page: 165502
  year: 2012
  ident: 38468_CR37
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/24/16/165502
– ident: 38468_CR40
  doi: 10.5281/zenodo.7553827
– ident: 38468_CR26
– ident: 38468_CR24
– volume: 126
  start-page: 066401
  year: 2021
  ident: 38468_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.066401
– ident: 38468_CR39
  doi: 10.5281/zenodo.7553640
– volume: 99
  start-page: 195419
  year: 2019
  ident: 38468_CR35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.195419
– ident: 38468_CR47
– ident: 38468_CR19
– volume: 74
  start-page: 1674
  year: 2005
  ident: 38468_CR36
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.74.1674
– ident: 38468_CR41
  doi: 10.5281/zenodo.7553843
– volume: 98
  start-page: 146401
  year: 2007
  ident: 38468_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.146401
– volume: 156
  start-page: 014115
  year: 2022
  ident: 38468_CR27
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0072784
– volume: 119
  start-page: e2205221119
  year: 2022
  ident: 38468_CR15
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2205221119
– ident: 38468_CR21
– volume: 2
  start-page: 367
  year: 2022
  ident: 38468_CR25
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-022-00265-6
– ident: 38468_CR13
– volume: 50
  start-page: 17953
  year: 1994
  ident: 38468_CR44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 5
  start-page: 22
  year: 2019
  ident: 38468_CR10
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/s41524-019-0162-7
– ident: 38468_CR30
– volume: 102
  start-page: 11635
  year: 2005
  ident: 38468_CR29
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0505436102
– volume: 54
  start-page: 11169
  year: 1996
  ident: 38468_CR42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– ident: 38468_CR9
– volume: 8
  start-page: 158
  year: 2022
  ident: 38468_CR28
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/s41524-022-00843-2
– volume: 556
  start-page: 80
  year: 2018
  ident: 38468_CR32
  publication-title: Nature
  doi: 10.1038/nature26154
– ident: 38468_CR23
– volume: 89
  start-page: 015003
  year: 2017
  ident: 38468_CR38
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.89.015003
– ident: 38468_CR48
  doi: 10.5281/zenodo.7554314
– volume: 148
  start-page: 241722
  year: 2018
  ident: 38468_CR4
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5019779
– volume: 120
  start-page: 143001
  year: 2018
  ident: 38468_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.143001
SSID ssj0000391844
Score 2.668982
Snippet The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural...
Abstract The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2848
SubjectTerms 639/301/1034/1037
639/301/1034/1038
639/705/117
639/766/119/995
Accuracy
Deep learning
Density functional theory
Electronic structure
Hamiltonian functions
Humanities and Social Sciences
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
Spin-orbit interactions
Structure-function relationships
Symmetry
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJuUgozEAQRR83Ac54QAtVohwYlKe7P8hEqQtN3dSvvvmXGcVMuj18S78npe33pmvgF4JTynbGaRB8uLnAc0KWm8zDVxsfgQQt1Rc_KXr2Jxwj8vm2W6cFulssrJJ0ZH7QZLd-SHlSwbRN-t5O_PznOaGkXZ1TRC4ybcIuoyKulql-18x0Ls55Lz1CtT1PJwxaNnwECV15KajuROPIq0_f_Cmn-XTP6RN43h6Pge3E04kn0YBX8fbvj-AdweJ0tuH8KvRCfNwlR8xRCdsqPX9Zvcn29OL_EvMp4pIzpLXNWPxeAsUlxO7Ug9GwJzVOC-3jKKf-O1IYu9j1u2oKsRRI74PY_g5Pjo26dFniYr5Lbh5Tq3rQla88p3OpTBFR5xmwm-tcIYIavgAsLYSnuHDy1xyoVKmtDZxjuvfd3Uj2GvH3r_FFhly8Zb4V1lNPem7dqgOyO4Jiqv1pUZlNP5Kptox2n6xU8V09-1VKNMFMpERZkomcHb-TNnI-nGtas_ktjmlUSYHR8MF99Vsj_V4WYsUeUIxDPO6I533GpfGOswjAudwcEkdJWseKWudC6Dl_NrtD9KqujeD5u4RmBAqTuRwZNRR-ad0AQg9JhFBnJHe3a2uvumP_0ROb7RUyJOEE0G7yZFu9rX_89i__qf8QzuVKT7xD4rD2BvfbHxzxFUrc2LaDm_Abm0IoQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_OE8EX8dvqKRF8ULS6bdM0eRBRuWMRzicX7i0k6UQPzq63tyvuf-9M2q6srj752iYlzEfml2bmNwBPFEq-zZzkMchJLiO5lPaoc8dcLBhjrAwXJx9_VNOZ_HBSn-zB2O5oEODFzqMd95OaLc5e_jhfvyGHf92XjOtXFzK5O0WfvNJcSaQvwWWKTA076vEA99POXBk60Mihdmb31K34lGj8d2HPP1Mof7tHTeHp6DpcG3CleNsbwg3Yw-4mXOk7Ta5vwdeBXlrEMRlLEFoVh0-rZzmer06_05GZZCyY3pJGdX1yuEiUl2N5UifmUbSc8L5cC46H_W9EkWoh12LKv0oISdJ3bsPs6PDT-2k-dFrIQy2LZR4aH52TJRoXi9hOkHCcj9gE5b3SZWwjwdrSYUsPA3PMxVL7aEKNLTqs6uoO7HfzDu-BKENRY1DYlt5J9I1pojNeScfUXk1bZFCM8rVhoCHnbhhnNl2HV9r2OrGkE5t0YnUGzzdzvvUkHP8c_Y7VthnJBNrpwXzx2Q7-aA0tJjB1jiJ803pnpJHB4cSHlsK6chkcjEq3o1HaUhc1nQAbLTN4vHlN_siXLK7D-SqNURRgKqMyuNvbyGYl3BGIdtBJBnrLeraWuv2mO_2SOL9p5yTcoOoMXoyG9mtdf5fF_f8hiwdwtWQP4TRPcwD7y8UKHxIUW_pHyb9-AjpOMno
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEC7WFcGL-LbXVSJ4ULSxH-l0-qjDLoOgJxf2FvKo6IL26O7Mwvx7q9IPGV0Fr92VpkhVpb5Oqr4APFco-TSzyKOXRS4jhZR2qHPLXCwYY6w7bk7-8FEtT-T70-Z0D6qpFyYV7SdKy7RMT9Vhby5kCmnKMHmtuVtIX4PrTN3OXr1Qi3lfhRnPtZRjf0xR6yuG7uSgRNV_Fb78s0zyt7PSlIKOb8OtETuKt4O2d2AP-7twY7hNcnsPvo0U0iJOBVeCEKk4elG_zPHH5uySfotpHgVTWJJUPxSAi0RrObUg9WIVReCi9vVWcM4btgpF6nfciiVvhxBapO_ch5Pjo0-LZT7eppD7Rpbr3LcuWisr7GwsYyiQsJqL2HrlnNJVDJGga2Ux0EPPPHKx0i52vsGAFuumfgD7_arHRyAqXzboFYbKWYmu7dpoO6ekZfquNpQZlNP8Gj9SjfONF19NOvKutRlsYsgmJtnE6AxezWO-D0Qb_5R-x2abJZkkOz1YnX82o9OYjpTxTI-jCMMEZzvZSW-xcD5Q6lY2g8PJ6GaM3AtT6bKhv7xWywyeza8p5vggxfa42iQZRUmk7lQGDwcfmTXhW39olSwy0Dves6Pq7pv-7Evi9abVkbCBajJ4PTnaL73-PhcH_yf-GG5WHAvMQKsPYX99vsEnBKzW7mmKpJ8vgCBS
  priority: 102
  providerName: Springer Nature
Title General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian
URI https://link.springer.com/article/10.1038/s41467-023-38468-8
https://www.ncbi.nlm.nih.gov/pubmed/37208320
https://www.proquest.com/docview/2815862784
https://www.proquest.com/docview/2816762396
https://pubmed.ncbi.nlm.nih.gov/PMC10199065
https://doaj.org/article/9047c48016244dba9494cae0bcd4136a
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_0RPBF_LZ6LhF8ULRcP9I0edxbdl0W7hD1YN9CkiZ4oF31doX9751J2_XWzxdfWkjTEuY7zcxvAJ4Jz-k0M0uD41nKA6qUtF6mhrBYfAihVFScfHIq5md8sayWl1p9UU5YBw_cEe5IZbx2hHEi0BE11iiuuDM-s65B-ytiaIQ-79JmKtrgUuHWhfdVMlkpjy54tAnootJSUrmR3PNEEbD_d1Hmr8mSP52YRkc0uwU3-wiSjbuV34Yrvr0D17uektu78KkHkmZhSLtiGJey6fPyReq_bM6_4eYYqckIyBJntV0aOIvglkMhUstWgTWU2r7eMvJ83Q9DFqset2xOP0UwZsTv3IOz2fT9ZJ72PRVSV_F8nbraBmN44ZUJeWgyjxGbDb52wlohi9AEDGAL4xscdIQmFwppg3KVb7zxZVXeh4N21fqHwAqXV94J3xTWcG9rVQejrOCGQLzqJk8gH-irXQ84Tn0vPup48F1K3fFEI0905ImWCbzcvfO5g9v46-xjYttuJkFlxwEUIN0LkP6XACVwODBd9_p7oQuZV7jXqyVP4OnuMWoeHaeY1q82cY5AV1IqkcCDTkZ2K6HeP2grswTknvTsLXX_SXv-IaJ7o43ECEFUCbwaBO3Huv5Mi0f_gxaP4UZBGkLotPIQDtZfN_4JBl1rO4Kr9bLGq5y9HsG18XjxboH34-npm7c4OhGTUdRAvJ5w-R1l0zE5
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB5VRQheKu4GChgJJBBEzeE4zgNCHK229HhqpX0ztmNDpZJtu7ug_VP8Rmaco1qOvvU1cSLHc33xeL4BeC4cp2xmEnvLk5h7NClpnIw1cbE4731eUXHy_oEYHfHP42K8Ar_6Whg6Vtn7xOCo64mlPfLNTKYFou9S8nenZzF1jaLsat9Co1WLXbf4ib9s07c7n1C-L7Jse-vw4yjuugrEtuDpLLal8VrzzFXap75OHGIW411phTFCZr72COEy7Wq8aIlPzWfS-MoWrnbahS4R6PKvYeBNyKLKcTns6RDbuuS8q81Jcrk55cETYWCMc0lFTnIp_oU2Af_Ctn8f0fwjTxvC3_YtWOtwK3vfKtptWHHNHbjedrJc3IXvHX018_1hL4ZomG29zF_F7mx-_AN_yVGGjOgzcVTTHj5ngVKzL39q2MSzmg7UzxaM4m27TclCreWCjWgrBpEqvuceHF3Jmt-H1WbSuHVgmU0LZ4WrM6O5M2VVel0ZwTVRh5V1GkHar6-yHc05dds4USHdnkvVykShTFSQiZIRvB6eOW1JPi4d_YHENowkgu5wYXL-VXX2riqcjCVqHoH4qTa64hW32iXG1ggbhI5goxe66rzGVF3oeATPhtto75TE0Y2bzMMYgQEsr0QED1odGWZCHYfQQycRyCXtWZrq8p3m-FvgFEfPjLhEFBG86RXtYl7_X4uHl3_GU7gxOtzfU3s7B7uP4GZGdkDMt3IDVmfnc_cYAd3MPAlWxODLVZvtb-3pY-0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRSAuiDeBAkYCCQTR5uE4zgEhoF1tKVQcqLQ3Yzs2VIKk7e6C9q_x65hxkq2WR2-9Jk7keB7-4pn5BuCxcJyimUnsLU9i7tGkpHEy1sTF4rz3eUXFyR_2xeSAv5sW0w34NdTCUFrl4BODo65bS2fko0ymBaLvUvKR79MiPm6PXx0dx9RBiiKtQzuNTkX23PIn_r7NXu5uo6yfZNl459PbSdx3GIhtwdN5bEvjteaZq7RPfZ04xC_Gu9IKY4TMfO0RzmXa1XjREreaz6TxlS1c7bQLHSPQ_V8o8yIlGyun5ep8h5jXJed9nU6Sy9GMB6-Em2ScSyp4kmt7YWgZ8C-c-3e65h8x27AVjq_ClR7Dsted0l2DDddch4tdV8vlDfjeU1kzPyR-MUTGbOdp_ix2x4vDH_h7jvJkRKWJo5ouEZ0Fes2hFKphrWc1JdfPl4z23u7IkoW6yyWb0LEMolZ8z004OJc1vwWbTdu4O8AymxbOCldnRnNnyqr0ujKCa6IRK-s0gnRYX2V7ynPqvPFNhdB7LlUnE4UyUUEmSkbwfPXMUUf4ceboNyS21Ugi6w4X2pMvqrd9VeFkLNH0CMRStdEVr7jVLjG2RgghdARbg9BV70Fm6lTfI3i0uo22TwEd3bh2EcYI3MzySkRwu9OR1Uyo-xB66yQCuaY9a1Ndv9Mcfg384uilEaOIIoIXg6Kdzuv_a3H37M94CJfQYNX73f29e3A5IzMgEly5BZvzk4W7j9hubh4EI2Lw-byt9jc25Ggj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=General+framework+for+E%283%29-equivariant+neural+network+representation+of+density+functional+theory+Hamiltonian&rft.jtitle=Nature+communications&rft.au=Xiaoxun+Gong&rft.au=He+Li&rft.au=Nianlong+Zou&rft.au=Runzhang+Xu&rft.date=2023-05-18&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41467-023-38468-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9047c48016244dba9494cae0bcd4136a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon