General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian

The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 2848 - 10
Main Authors Gong, Xiaoxun, Li, He, Zou, Nianlong, Xu, Runzhang, Duan, Wenhui, Xu, Yong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.05.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-learning framework to represent density functional theory (DFT) Hamiltonian as a function of material structure, which can naturally preserve the Euclidean symmetry even in the presence of spin–orbit coupling. Our DeepH-E3 method enables efficient electronic structure calculation at ab initio accuracy by learning from DFT data of small-sized structures, making the routine study of large-scale supercells (>10 4 atoms) feasible. The method can reach sub-meV prediction accuracy at high training efficiency, showing state-of-the-art performance in our experiments. The work is not only of general significance to deep-learning method development but also creates opportunities for materials research, such as building a Moiré-twisted material database. Fundamental symmetries are crucial to the deep-learning modeling of physical systems. Here the authors use equivariant neural networks preserving the Euclidean symmetries to accelerate electronic structure calculations by orders of magnitude keeping sub-meV accuracy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-38468-8