Cannabinoid-induced actomyosin contractility shapes neuronal morphology and growth

Endocannabinoids are recently recognized regulators of brain development, but molecular effectors downstream of type-1 cannabinoid receptor (CB1R)-activation remain incompletely understood. We report atypical coupling of neuronal CB1Rs, after activation by endo- or exocannabinoids such as the mariju...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 3; p. e03159
Main Authors Roland, Alexandre B, Ricobaraza, Ana, Carrel, Damien, Jordan, Benjamin M, Rico, Felix, Simon, Anne, Humbert-Claude, Marie, Ferrier, Jeremy, McFadden, Maureen H, Scheuring, Simon, Lenkei, Zsolt
Format Journal Article
LanguageEnglish
Published England eLife Sciences Publications Ltd 15.09.2014
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Endocannabinoids are recently recognized regulators of brain development, but molecular effectors downstream of type-1 cannabinoid receptor (CB1R)-activation remain incompletely understood. We report atypical coupling of neuronal CB1Rs, after activation by endo- or exocannabinoids such as the marijuana component ∆(9)-tetrahydrocannabinol, to heterotrimeric G12/G13 proteins that triggers rapid and reversible non-muscle myosin II (NM II) dependent contraction of the actomyosin cytoskeleton, through a Rho-GTPase and Rho-associated kinase (ROCK). This induces rapid neuronal remodeling, such as retraction of neurites and axonal growth cones, elevated neuronal rigidity, and reshaping of somatodendritic morphology. Chronic pharmacological inhibition of NM II prevents cannabinoid-induced reduction of dendritic development in vitro and leads, similarly to blockade of endocannabinoid action, to excessive growth of corticofugal axons into the sub-ventricular zone in vivo. Our results suggest that CB1R can rapidly transform the neuronal cytoskeleton through actomyosin contractility, resulting in cellular remodeling events ultimately able to affect the brain architecture and wiring.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
Université Paris Descartes, Sorbonne Paris Cité, CNRS UMR8250, Paris, France.
ISSN:2050-084X
2050-084X
DOI:10.7554/elife.03159