Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions
Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degradi...
Saved in:
Published in | Microbes and Environments Vol. 32; no. 3; pp. 188 - 200 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Japan
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
2017
Japan Science and Technology Agency the Japanese Society of Microbial Ecology (JSME)/the Japanese Society of Soil Microbiology (JSSM)/the Taiwan Society of Microbial Ecology (TSME)/the Japanese Society of Plant Microbe Interactions (JSPMI) |
Subjects | |
Online Access | Get full text |
ISSN | 1342-6311 1347-4405 |
DOI | 10.1264/jsme2.ME16188 |
Cover
Abstract | Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degrading enzymes is available. However, the biodegradation of multiple VOCs remains a challenging issue. Practical sites, such as chemical factories, research facilities, and illegal dumping sites, are often contaminated with multiple VOCs. In order to investigate the potential of biodegrading multiple VOCs, we initially reviewed the biodegradation of individual VOCs. VOCs include chlorinated ethenes (tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride), BTEX (benzene, toluene, ethylbenzene, and xylene), and chlorinated methanes (carbon tetrachloride, chloroform, and dichloromethane). We also summarized essential information on the biodegradation of each kind of VOC under aerobic and anaerobic conditions, together with the microorganisms that are involved in VOC-degrading pathways. Interactions among multiple VOCs were then discussed based on concrete examples. Under conditions in which multiple VOCs co-exist, the biodegradation of a VOC may be constrained, enhanced, and/or unaffected by other compounds. Co-metabolism may enhance the degradation of other VOCs. In contrast, constraints are imposed by the toxicity of co-existing VOCs and their by-products, catabolite repression, or competition between VOC-degrading enzymes. This review provides fundamental, but systematic information for designing strategies for the bioremediation of multiple VOCs, as well as information on the role of key microorganisms that degrade VOCs. |
---|---|
AbstractList | Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degrading enzymes is available. However, the biodegradation of multiple VOCs remains a challenging issue. Practical sites, such as chemical factories, research facilities, and illegal dumping sites, are often contaminated with multiple VOCs. In order to investigate the potential of biodegrading multiple VOCs, we initially reviewed the biodegradation of individual VOCs. VOCs include chlorinated ethenes (tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride), BTEX (benzene, toluene, ethylbenzene, and xylene), and chlorinated methanes (carbon tetrachloride, chloroform, and dichloromethane). We also summarized essential information on the biodegradation of each kind of VOC under aerobic and anaerobic conditions, together with the microorganisms that are involved in VOC-degrading pathways. Interactions among multiple VOCs were then discussed based on concrete examples. Under conditions in which multiple VOCs co-exist, the biodegradation of a VOC may be constrained, enhanced, and/or unaffected by other compounds. Co-metabolism may enhance the degradation of other VOCs. In contrast, constraints are imposed by the toxicity of co-existing VOCs and their by-products, catabolite repression, or competition between VOC-degrading enzymes. This review provides fundamental, but systematic information for designing strategies for the bioremediation of multiple VOCs, as well as information on the role of key microorganisms that degrade VOCs. |
Author | Yoshikawa, Miho Toyota, Koki Zhang, Ming |
AuthorAffiliation | 1 Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST) 1–1–1, Higashi, Tsukuba, Ibaraki 305–8567 Japan 2 Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology 2–24–16, Koganei, Tokyo 184–8588 Japan |
AuthorAffiliation_xml | – name: 2 Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology 2–24–16, Koganei, Tokyo 184–8588 Japan – name: 1 Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST) 1–1–1, Higashi, Tsukuba, Ibaraki 305–8567 Japan |
Author_xml | – sequence: 1 fullname: Yoshikawa, Miho organization: Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology – sequence: 1 fullname: Toyota, Koki organization: Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology – sequence: 1 fullname: Zhang, Ming organization: Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28904262$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctvEzEQxi1URB9w5IpW4rzFr3W8FySIQotU1Evhajn2eONoYwfbQfS_x0m24SEh2Z6R5vd9Y81corMQAyD0muBrQgV_t84boNdfFkQQKZ-hC8L4rOUcd2eHnLaCEXKOLnNeY8xYN6Mv0DmVPeZU0AsUP_poYUja6uJjaKJrvsWx5iM092nQwZtmHjfbuAs2NzrY5mEFPjUL58CU3FTJb4elH315bCoKqaraxU-fiw9DzYP1e__8Ej13eszwaopX6OunxcP8tr27v_k8_3DXmo6T0i6toTPoKcVOaNovmWZGOhDEUk06Q-plXEtscE-Ioc5y01nsQBoNfdcxdoXeH323u-UGrIFQkh7VNvmNTo8qaq_-rgS_UkP8oTqBhZCyGrydDFL8voNc1DruUqh_VqTnszplyfpKvfmzzcn_acAVYEfApJhzAqeML4dR165-VASr_RrVYY1qWmNVtf-onoz_x8-P_DoXPcCJ1ql4M8JEs3r2z6Q6Vc1KJwWB_QLjaLpL |
CitedBy_id | crossref_primary_10_1007_s11814_019_0303_1 crossref_primary_10_1016_j_apgeochem_2019_104375 crossref_primary_10_1039_D0CY00787K crossref_primary_10_1080_13102818_2021_1996267 crossref_primary_10_1080_10889868_2019_1605975 crossref_primary_10_1016_j_biortech_2023_128600 crossref_primary_10_1016_j_envres_2024_118472 crossref_primary_10_1089_ees_2020_0427 crossref_primary_10_3389_fmicb_2021_821531 crossref_primary_10_3390_w13172442 crossref_primary_10_1016_j_chemosphere_2023_140843 crossref_primary_10_1016_j_ibiod_2023_105585 crossref_primary_10_1016_j_jes_2022_02_037 crossref_primary_10_1016_j_sciaf_2020_e00401 crossref_primary_10_3390_agronomy11030493 crossref_primary_10_1016_j_jbiosc_2019_01_006 crossref_primary_10_1038_s41598_021_86992_8 crossref_primary_10_1002_bit_28630 crossref_primary_10_1016_j_jhazmat_2022_128749 crossref_primary_10_1016_j_chemosphere_2021_130757 crossref_primary_10_1016_j_chemosphere_2020_127148 crossref_primary_10_1016_j_chemosphere_2020_126338 crossref_primary_10_1038_s41598_024_70873_x crossref_primary_10_1093_femsec_fiab069 crossref_primary_10_3390_geosciences8020035 crossref_primary_10_1021_acs_est_4c07202 crossref_primary_10_1016_j_molliq_2023_123585 crossref_primary_10_1016_j_wroa_2022_100142 crossref_primary_10_1039_D4EM00644E crossref_primary_10_1016_j_biortech_2021_126427 crossref_primary_10_22207_JPAM_18_4_28 crossref_primary_10_53623_tasp_v2i1_68 crossref_primary_10_1016_j_seppur_2024_131222 crossref_primary_10_3390_catal10121456 crossref_primary_10_1016_j_jclepro_2025_145194 crossref_primary_10_1016_j_chemosphere_2021_131137 crossref_primary_10_1039_D4NP00037D crossref_primary_10_1016_j_chemosphere_2022_136440 crossref_primary_10_1111_1758_2229_13222 crossref_primary_10_1016_j_jhazmat_2021_126614 crossref_primary_10_1016_j_chemosphere_2024_142490 crossref_primary_10_1016_j_envpol_2023_122215 crossref_primary_10_1016_j_ibiod_2024_105973 crossref_primary_10_1007_s12649_024_02825_5 crossref_primary_10_1016_j_jece_2024_113248 crossref_primary_10_3934_environsci_2021022 crossref_primary_10_1016_j_chemosphere_2022_136656 crossref_primary_10_1088_1757_899X_871_1_012016 crossref_primary_10_3389_fmicb_2021_791723 crossref_primary_10_1007_s00253_022_12147_y crossref_primary_10_1016_j_watres_2018_12_022 crossref_primary_10_2139_ssrn_4056738 crossref_primary_10_1007_s44378_024_00022_3 crossref_primary_10_1186_s12934_021_01556_9 crossref_primary_10_2139_ssrn_3949243 crossref_primary_10_1007_s41348_024_01016_7 crossref_primary_10_1515_chem_2024_0036 crossref_primary_10_1016_j_watres_2022_118428 crossref_primary_10_3390_microorganisms9102088 crossref_primary_10_3390_microorganisms12040702 crossref_primary_10_1007_s11356_024_33474_9 crossref_primary_10_1016_j_eti_2021_101843 crossref_primary_10_1016_j_envpol_2024_124042 crossref_primary_10_2139_ssrn_4048756 crossref_primary_10_3390_pr10122568 crossref_primary_10_1109_TPS_2021_3134371 crossref_primary_10_1016_j_colcom_2023_100749 crossref_primary_10_1016_j_jhazmat_2024_134798 crossref_primary_10_1007_s12275_018_8187_z crossref_primary_10_1016_j_cej_2024_153585 crossref_primary_10_1016_j_chemosphere_2019_125260 crossref_primary_10_1021_acs_est_3c04256 crossref_primary_10_3390_molecules29143279 crossref_primary_10_1016_j_eiar_2024_107638 crossref_primary_10_1007_s11356_024_35640_5 crossref_primary_10_3390_pr11030705 crossref_primary_10_2139_ssrn_4125381 |
Cites_doi | 10.1002/bit.260440417 10.1128/AEM.57.7.1935-1941.1991 10.1016/S0021-9258(18)63793-7 10.1016/j.chemosphere.2007.01.016 10.1128/AEM.62.1.61-66.1996 10.1007/s00253-006-0424-4 10.1128/JB.180.16.4140-4145.1998 10.1128/AEM.54.6.1498-1503.1988 10.1146/annurev.micro.58.030603.123600 10.1264/jsme2.ME13113 10.1186/1944-3277-10-15 10.1128/aem.61.8.2936-2942.1995 10.1080/10643389409388463 10.1128/JB.186.10.3117-3123.2004 10.1016/j.resmic.2011.01.008 10.1007/s00253-006-0724-8 10.1128/AEM.60.6.1914-1920.1994 10.1111/j.1574-6968.1994.tb07126.x 10.1038/nature01717 10.1128/AEM.64.8.3023-3024.1998 10.1128/AEM.59.5.1444-1451.1993 10.1186/s40793-015-0095-9 10.1351/pac200173071163 10.1128/AEM.40.5.950-958.1980 10.1264/jsme2.ME11357 10.1016/0006-291X(89)90042-9 10.1111/j.1574-6968.1999.tb13771.x 10.1016/S0168-1656(00)00364-3 10.1128/JB.184.13.3419-3425.2002 10.1111/j.1365-2958.2011.07912.x 10.1264/jsme2.ME13104 10.1111/j.1574-6968.2011.02249.x 10.1128/AEM.68.6.2726-2730.2002 10.1007/978-94-015-9062-4 10.1371/journal.pone.0052038 10.1016/j.mimet.2005.04.018 10.1128/AEM.57.4.1031-1037.1991 10.1128/AEM.02809-12 10.1128/AEM.53.5.949-954.1987 10.1016/j.chemosphere.2006.09.084 10.1111/j.1751-7915.2011.00260.x 10.1021/bi00809a023 10.1021/es0255711 10.1128/AEM.54.2.604-606.1988 10.1007/s11157-010-9219-2 10.1007/s11356-009-0238-x 10.1007/s11157-010-9215-6 10.1128/AEM.70.8.4880-4888.2004 10.1128/AEM.62.8.2716-2722.1996 10.1128/JB.185.18.5536-5545.2003 10.1128/AEM.55.6.1624-1629.1989 10.1128/AEM.01873-12 10.1111/j.1574-6941.2010.00935.x 10.1128/AEM.55.11.2960-2964.1989 10.1023/A:1005366406453 10.1023/B:BIOD.0000009947.09125.35 10.1128/AEM.63.9.3607-3613.1997 10.1128/AEM.57.10.2981-2985.1991 10.1021/bi00452a027 10.1128/AEM.56.4.1169-1171.1990 10.1016/j.jhazmat.2008.08.007 10.1126/science.1258118 10.1186/1471-2164-13-200 10.1016/S0922-338X(97)86976-0 10.1021/es1023459 10.1021/bi00322a029 10.1128/AEM.49.1.242-243.1985 10.1128/AEM.69.6.3350-3358.2003 10.1023/A:1015012913426 10.1126/science.276.5318.1568 10.7554/eLife.04279 10.1128/AEM.62.10.3704-3711.1996 10.1128/AEM.01067-06 10.1007/s002530050679 10.1128/jb.178.19.5755-5761.1996 10.1038/ismej.2010.27 10.1002/1097-0290(2000)71:4<274::AID-BIT1017>3.0.CO;2-Z 10.1021/es00140a013 10.1128/JB.182.19.5433-5439.2000 10.1016/j.mimet.2012.09.017 10.1128/AEM.70.7.3814-3820.2004 10.1111/j.1745-6592.1997.tb01282.x 10.1128/jb.176.12.3749-3756.1994 10.1002/(SICI)1097-0290(19991005)65:1<100::AID-BIT12>3.0.CO;2-1 10.1128/AEM.64.6.2006-2012.1998 10.1128/AEM.71.8.4736-4743.2005 10.1128/AEM.64.3.1106-1114.1998 10.1021/acs.est.5b01979 10.1007/s10532-014-9715-0 10.1007/BF00301854 10.1038/77344 10.1128/AEM.54.11.2819-2824.1988 10.1128/AEM.53.9.2129-2132.1987 10.1007/s00253-012-4494-1 10.1128/AEM.62.11.4108-4113.1996 10.1128/JB.186.5.1337-1344.2004 10.1128/AEM.70.3.1385-1392.2004 10.1061/9780784480168.030 10.1021/es101356t 10.1128/AEM.58.9.3038-3046.1992 10.1021/es990638e 10.1080/10889860290777431 10.1111/j.1462-2920.2009.02150.x 10.1021/es001285i 10.1074/jbc.M110.126615 10.1021/bi00043a012 10.1111/j.1462-2920.2011.02524.x 10.1016/S0043-1354(99)00121-9 10.1264/jsme2.ME14127 10.1128/AEM.66.12.5141-5147.2000 10.1128/AEM.70.6.3253-3262.2004 10.1128/JB.145.3.1137-1143.1981 10.1016/j.chemosphere.2007.08.029 10.1128/jb.173.9.3010-3016.1991 10.1111/j.1574-6976.2010.00210.x 10.1128/AEM.01695-08 10.1128/AEM.64.1.208-215.1998 10.1016/0378-1119(94)00844-I 10.1264/jsme2.ME09133 10.1128/JB.162.2.676-681.1985 10.1128/AEM.64.2.646-650.1998 10.1016/j.mib.2008.02.007 10.1128/AEM.69.8.4628-4638.2003 10.1021/bi00437a057 10.1046/j.1365-2958.1998.00826.x 10.3109/10242429209014885 10.1007/s10532-008-9233-z 10.1016/0385-6380(88)90109-4 10.1021/es050084h 10.1021/es002064f 10.1111/j.1462-2920.2007.01427.x 10.1016/0922-338X(96)88811-8 10.1007/s11270-016-3050-5 10.1128/AEM.72.3.1980-1987.2006 10.1021/es990809f 10.1159/000121324 10.1128/jb.173.5.1690-1695.1991 10.1021/bi00847a031 10.1007/s00253-005-1944-z 10.1128/AEM.70.10.6347-6351.2004 10.1099/00221287-143-8-2557 10.1007/s12010-012-0005-1 10.1128/JB.01604-07 10.1016/j.soilbio.2013.01.010 10.1128/AEM.52.2.383-384.1986 10.1128/AEM.55.12.3155-3161.1989 10.1128/AEM.54.7.1703-1708.1988 10.1128/JB.01122-07 10.1007/s10532-012-9539-8 10.1007/BF00124489 10.1111/j.1432-1033.1992.tb17260.x 10.1016/S0043-1354(02)00151-3 10.1111/1574-6968.12160 10.1074/jbc.275.14.10085 10.1128/AEM.59.9.2991-2997.1993 10.1016/S0923-2508(02)01378-5 10.1007/s11270-016-3216-1 10.1128/AEM.62.9.3304-3312.1996 10.1128/AEM.69.10.6041-6046.2003 10.1099/00207713-51-2-581 10.1007/BF00381782 10.1126/science.1102226 10.1128/AEM.64.10.3626-3632.1998 10.1139/cjm-2014-0095 10.1128/AEM.59.4.960-967.1993 10.1128/AEM.58.4.1220-1226.1992 10.1128/AEM.62.3.825-833.1996 10.1128/AEM.55.11.2819-2826.1989 10.1007/BF01166208 10.1007/s002530000566 10.1016/j.jhazmat.2012.03.076 10.1128/AEM.64.4.1270-1275.1998 10.1128/JB.124.1.7-13.1975 10.1128/AEM.65.12.5212-5221.1999 10.1007/BF00276528 10.1074/jbc.271.28.16515 10.1002/1097-0290(20001220)70:6<693::AID-BIT12>3.0.CO;2-W 10.1128/AEM.00673-16 |
ContentType | Journal Article |
Copyright | 2017 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions. Copyright Japan Science and Technology Agency 2017 Copyright © 2017 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions. 2017 |
Copyright_xml | – notice: 2017 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions. – notice: Copyright Japan Science and Technology Agency 2017 – notice: Copyright © 2017 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions. 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL C1K F1W H95 L.G M7N 5PM |
DOI | 10.1264/jsme2.ME16188 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 1347-4405 |
EndPage | 200 |
ExternalDocumentID | PMC5606688 28904262 10_1264_jsme2_ME16188 article_jsme2_32_3_32_ME16188_article_char_en |
Genre | Journal Article Review |
GroupedDBID | 123 2WC 53G ACPRK ADBBV ADRAZ AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z HYE JSF JSH KQ8 M48 OK1 PGMZT RJT RPM RZJ TKC TR2 WBO ~02 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL C1K F1W H95 L.G M7N 5PM |
ID | FETCH-LOGICAL-c541t-bdc27e9220f6a29b3a3c8fe61d2a15c115c34a80c0911c2fd4c5d0fe8cae95533 |
IEDL.DBID | M48 |
ISSN | 1342-6311 |
IngestDate | Thu Aug 21 14:06:33 EDT 2025 Mon Jun 30 10:14:41 EDT 2025 Thu Jan 02 23:09:44 EST 2025 Tue Jul 01 03:52:12 EDT 2025 Thu Apr 24 23:05:28 EDT 2025 Wed Sep 03 06:09:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | biodegradation BTEX chlorinated ethene chlorinated methane multiple VOCs |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-bdc27e9220f6a29b3a3c8fe61d2a15c115c34a80c0911c2fd4c5d0fe8cae95533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1264/jsme2.ME16188 |
PMID | 28904262 |
PQID | 1947347839 |
PQPubID | 1976392 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5606688 proquest_journals_1947347839 pubmed_primary_28904262 crossref_citationtrail_10_1264_jsme2_ME16188 crossref_primary_10_1264_jsme2_ME16188 jstage_primary_article_jsme2_32_3_32_ME16188_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-00-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Miyagi |
PublicationTitle | Microbes and Environments |
PublicationTitleAlternate | Microbes Environ. |
PublicationYear | 2017 |
Publisher | Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles Japan Science and Technology Agency the Japanese Society of Microbial Ecology (JSME)/the Japanese Society of Soil Microbiology (JSSM)/the Taiwan Society of Microbial Ecology (TSME)/the Japanese Society of Plant Microbe Interactions (JSPMI) |
Publisher_xml | – name: Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles – name: Japan Science and Technology Agency – name: the Japanese Society of Microbial Ecology (JSME)/the Japanese Society of Soil Microbiology (JSSM)/the Taiwan Society of Microbial Ecology (TSME)/the Japanese Society of Plant Microbe Interactions (JSPMI) |
References | 164. Smidt, H., and W.M. de Vos. 2004. Anaerobic microbial dehalogenation. Annu Rev Microbiol. 58:43-73. 39. Coleman, N.V., and J.C. Spain. 2003. Epoxyalkane: coenzyme M transferase in the ethene and vinyl chloride biodegradation pathways of Mycobacterium strain JS60. J Bacteriol. 185:5536-5545. 88. Koenig, J.C., K.D. Groissmeier, and M.J. Manefield. 2014. Tolerance of anaerobic bacteria to chlorinated solvents. Microbes Environ. 29:23-30. 52. Fishman, A., Y. Tao, and T.K. Wood. 2004. Toluene 3-monooxygenase of Ralstonia pickettii PKO1 is a para-hydroxylating enzyme. J Bacteriol. 186:3117-3123. 141. Oh, Y.S., Z. Shareefdeen, B.C. Baltzis, and R. Bartha. 1994. Interactions between benzene, toluene, and p-xylene (BTX) during their biodegradation. Biotechnol Bioeng. 44:533-538. 76. Justicia-Leon, S.D., K.M. Ritalahti, E.E. Mack, and F.E. Löffer. 2012. Dichloromethane fermentation by a Dehalobacter sp. in an enrichment culture derived from river sediment. Appl Environ Microbiol. 78:1288-1291. 49. Elsgaard, L. 2013. Reductive transformation and inhibitory effect of ethylene under methanogenic conditions in peat-soil. Soil Biol Biochem. 60:19-22. 153. Reij, M.W., J. Kieboom, J.A.M. de Bont, and S. Hartmans. 1995. Continuous degradation of trichloroethylene by Xanthobacter sp. strain Py2 during growth on propene. Appl Environ Microbiol. 61:2936-2942. 131. Nagarajan, K., and K.C. Loh. 2015. Formulation of microbial cocktails for BTEX biodegradation. Biodegradation. 26:51-63. 146. Penny, C., S. Vuilleumier, and F. Bringel. 2010. Microbial degradation of tetrachloromethane: mechanisms and perspectives for bioremediation. FEMS Microbiol Ecol. 74:257-275. 25. Bühler, B., A. Schmid, B. Hauer, and B. Witholt. 2000. Xylene monooxygenase catalyzes the multistep oxygenation of toluene and pseudocumene to corresponding alcohols, aldehydes, and acids in Escherichia coli JM101. J Biol Chem. 275:10085-10092. 166. Sung, Y., K.E. Fletcher, K.M. Ritalahti, R.P. Apkarian, N. Ramos-Hernandez, R.A. Sanford, N.M. Mesbah, and F.E. Löffler. 2006. Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ Microbiol. 72:2775-2782. 90. Kohler-Staub, D., and T. Leisinger. 1985. Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2. J Bacteriol. 162:676-681. 5. Altenschmidt, U., and G. Fuchs. 1991. Anaerobic degradation of toluene in denitrifying Pseudomonas sp.: indication for toluene methylhydroxylation and benzoyl-CoA as central aromatic intermediate. Arch Microbiol. 156:152-158. 66. He, J., K.M. Ritalahti, K.L. Yang, S.S. Koenigsberg, and F.E. Löffler. 2003. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature. 424:62-65. 113. Martin, K.E., J. Ozsvar, and N.V. Coleman. 2014. SmoXYB1C1Z of Mycobacterium sp. strain NBB4: a soluble methane monooxygenase (sMMO)-like enzyme, active on C2 to C4 alkanes and alkenes. Appl Environ Microbiol. 80:5801-5806. 185. United States Environmental Protection Agency. 2015. Fourth five-year review report for the Colesville municipal landfill site. United States Environmental Protection Agency, Washington, DC. 144. Parsons, . 2004. Principles and practices of enhanced anaerobic bioremediation of chlorinated solvents. Air Force Center for Environmental Excellence, Brooks City-Base, Texas: Naval Facilities Engineering Service Center, Port Hueneme, California: Environmental Security Technology Certification Program, Arlington, Virginia. 151. Rabus, R., and F. Widdel. 1995. Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol. 163:96-103. 111. Marco-Urrea, E., I. Nijenhuis, and L. Adrian. 2011. Transformation and carbon isotope fractionation of tetra- and trichloroethene to trans-dichloroethene by Dehalococcoides sp. strain CBDB1. Environ Sci Technol. 45:1555-1562. 102. Löffler, F.E., J. Yan, K.M. Ritalahti, L. Adrian, E.A. Edwards, K.T. Konstantinidis, J.A. Müller, H. Fullerton, S.H. Zinder, and A.M. Spormann. 2013. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol. 63:625-635. 207. Yoshikawa, M., M. Zhang, and K. Toyota. 2016. Enhancement and biological characteristics related to aerobic biodegradation of toluene with co-existence of benzene. Water Air Soil Pollut. 227:340. 162. Shim, H., and T.K. Wood. 2000. Aerobic degradation of mixtures of chlorinated aliphatics by cloned toluene-o-xylene monooxygenase and toluene o-monooxygenase in resting cells. Biotechnol Bioeng. 70:693-698. 75. Interstate Technology & Regulatory Council. 2013. Environmental Molecular Diagnostics, New Site Characterization and Remediation Enhancement Tools. EMD-2. Interstate Technology & Regulatory Council, Environmental Molecular Diagnostics Team, Washington, DC. 94. Krumholz, L.R., R. Sharp, and S. Fishbain. 1996. A freshwater anaerobe coupling acetate oxidation to tetrachloroethene dehalogenation. Appl Environ Microbiol. 62:4108-4113. 127. Muller, E.E.L., F. Bringel, and S. Vuilleumier. 2011. Dichloromethane-degrading bacteria in the genomic age. Res Microbiol. 162:869-876. 45. Duhamel, M., S.D. Wehr, L. Yu, H. Rizvi, D. Seepersad, S. Dworatzek, E.E. Cox, and E.A. Edwards. 2002. Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Res. 36:4193-4202. 61. Grostern, A., M. Duhamel, S. Dworatzek, and E.A. Edwards. 2010. Chloroform respiration to dichloromethane by a Dehalobacter population. Environ Microbiol. 12:1053-1060. 23. Brunner, W., D. Staub, and T. Leisinger. 1980. Bacterial degradation of dichloromethane. Appl Environ Microbiol. 40:950-958. 59. Gibson, T.L., A.S. Abdul, and R.H. Olsen. 1988. Microbial degradation of aromatic hydrocarbons in hydrogeological materials: microcosm studies, p.53-69.Proceedings of the Second National Outdoor Action Conference on Aquifer RestorationGroundwater and Geophysical Methods. 1. National Water Well Association, Dublin, Ohio. 8. Araki, N., K. Chino, D. Kasai, E. Masai, and M. Fukuda. 2014. Degradation of cis-1,2-dichloroethylene by Rhodococcus jostii RHA1. The 66th Annual Meeting of the Society of Biotechnology of Japan 3P-091(in Japanese). 99. Lee, E.-H., J. Kim, K.-S. Cho, Y.G. Ahn, and G.-S. Hwang. 2010. Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831. Environ Sci Poll Res. 17:64-77. 163. Shinoda, Y., Y. Sakai, H. Uenishi, Y. Uchihashi, A. Hiraishi, H. Yukawa, H. Yurimoto, and N. Kato. 2004. Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1. Appl Environ Microbiol. 70:1385-1392. 188. van Hylckama Vlieg, J.E.T., and D.B. Janssen. 2001. Formation and detoxification of reactive intermediates in the metabolism of chlorinated ethenes. J Biotechnol. 85:81-102. 51. Ensign, S.A. 1996. Aliphatic and chlorinated alkenes and epoxides as inducers of alkene monooxygenase and epoxidase activities in Xanthobacter strain Py2. Appl Environ Microbiol. 62:61-66. 211. Zylstra, G.J., W.R. McCombie, D.T. Gibson, and B.A. Finette. 1988. Toluene degradation by Pseudomonas putida F1: genetic organization of the tod operon. Appl Environ Microbiol. 54:1498-1503. 135. Neumann, A., H. Scholz-Muramatsu, and G. Diekert. 1994. Tetrachloroethene metabolism of Dehalospirillum multivorans. Arch Microbiol. 162:295-301. 184. United States Environmental Protection Agency. 2014. Third fiveyear review report for parker landfill superfund site, SDMS Doc ID 567594. United States Environmental Protection Agency, Washington, DC. 160. Shields, M.S., S.O. Montgomery, P.J. Chapman, S.M. Cuskey, and P.H. Pritchard. 1989. Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4. Appl Environ Microbiol. 55:1624-1629. 178. United States Environmental Protection Agency. 2011. First fiveyear review joint base Andrews naval air facility Washington. United States Environmental Protection Agency, Washington, DC. 6. Alvarez, P.J., and T.M. Vogel. 1991. Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl Environ Microbiol. 57:2981-2985. 186. van Agteren, M.H., S. Keuning, and D.B. Janssen. 1998. Handbook on biodegradation and biological treatment of hazardous organic compounds. Kluwer Academic Publishers, Dordrecht, Netherland. 171. Tang, S., W.W.M. Chan, K.E. Fletcher, J. Seifert, X. Liang, F.E. Löffler, E.A. Edwards, and L. Adrian. 2013. Functional characterization of reductive dehalogenases by using blue native polyacrylamide gel electrophoresis. Appl Environ Microbiol. 79:974-981. 105. Mägli, A., M. Messmer, and T. Leisinger. 1998. Metabolism of dichloromethane by strict anaerobic Dehalobacterium formicoaceticum. Appl Environ Microbiol. 64:646-650. 158. Seshadri, R., L. Adrian, D.E. Fouts, et al. 2005. Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science. 307:105-108. 60. Goris, T., B. Hornung, T. Kruse, A. Reinhold, M. Westermann, P.J. Schaap, H. Smidt, and G. Diekert. 2015. Draft genome sequence and characterization of Desulfitobacterium hafniense PCE-S. Stand Genomic Sci. 10:15. 106. Magnuson, J.K., R.V. Stern, J.M. Gossett, S.H. Zinder, and D.R. Burris. 1998. Reductive dechlorination of tetrachloroethene to ethene by a two-component enzyme pathway. Appl Environ Microbiol. 64:1270-1275. 83. Kim, J.M., N.T. Le, B.S. Chung, J.H. Park, J.W. Bae, E.L. Madsen, and C.O. Jeon. 2008. Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl Environ Mic 110 111 112 113 114 115 116 117 118 119 10 11 12 13 14 15 16 17 18 19 120 121 1 122 2 123 3 124 4 125 5 126 6 127 7 128 8 129 9 20 21 22 23 24 25 26 27 28 29 130 131 132 133 134 135 136 137 138 139 30 31 32 33 34 35 36 37 38 39 140 141 142 143 144 145 146 147 148 149 40 41 42 43 44 45 46 47 48 49 150 151 152 153 154 155 156 157 158 159 50 51 52 53 54 55 56 57 58 59 160 161 162 163 164 165 166 167 168 169 60 61 62 63 64 65 66 67 68 69 170 171 172 173 174 175 176 177 178 179 70 71 72 73 74 75 76 77 78 79 180 181 182 183 184 185 186 187 188 189 80 81 82 83 84 85 86 87 88 89 190 191 192 193 194 195 196 198 199 90 91 92 93 94 95 96 97 98 99 D.D. Wagner (197) 2012; 13 200 201 202 203 204 205 206 207 208 209 210 211 212 100 101 102 103 104 105 106 107 108 109 7578004 - Biochemistry. 1995 Oct 31;34(43):14066-76 18359269 - Curr Opin Microbiol. 2008 Apr;11(2):87-93 20529863 - J Biol Chem. 2010 Aug 6;285(32):24412-9 2559772 - Biochemistry. 1989 Dec 26;28(26):10061-5 7009570 - J Bacteriol. 1981 Mar;145(3):1137-43 12057934 - J Bacteriol. 2002 Jul;184(13):3419-25 24909708 - Microbes Environ. 2014;29(2):191-9 22503214 - J Hazard Mater. 2012 Jun 15;219-220:169-75 23306883 - Appl Biochem Biotechnol. 2013 Feb;169(4):1197-218 17965160 - J Bacteriol. 2008 Jan;190(1):37-47 16597982 - Appl Environ Microbiol. 2006 Apr;72(4):2775-82 8824622 - J Bacteriol. 1996 Oct;178(19):5755-61 26203328 - Stand Genomic Sci. 2015 Feb 24;10:15 21362021 - FEMS Microbiol Lett. 2011 May;318(2):137-42 18211265 - Environ Microbiol. 2008 Jan;10(1):31-46 9687467 - Appl Environ Microbiol. 1998 Aug;64(8):3023-4 15006757 - Appl Environ Microbiol. 2004 Mar;70(3):1385-92 2670929 - J Biol Chem. 1989 Sep 5;264(25):14940-6 12840758 - Nature. 2003 Jul 3;424(6944):62-5 22311591 - Biodegradation. 2012 Sep;23(5):635-44 12420924 - Water Res. 2002 Oct;36(17):4193-202 23284863 - PLoS One. 2012;7(12):e52038 11698363 - J Bacteriol. 2001 Dec;183(23):6763-70 11097881 - Appl Environ Microbiol. 2000 Dec;66(12):5141-7 21854516 - Environ Microbiol. 2011 Sep;13(9):2518-35 25331771 - Biodegradation. 2015 Feb;26(1):51-63 2843094 - Appl Environ Microbiol. 1988 Jun;54(6):1498-503 24992516 - Can J Microbiol. 2014 Jul;60(7):487-90 25877696 - Microbes Environ. 2015;30(2):164-71 17950413 - Chemosphere. 2008 Feb;70(8):1492-9 10440676 - Biotechnol Bioeng. 1999 Oct 5;65(1):100-7 1999388 - J Bacteriol. 1991 Mar;173(5):1690-5 1746958 - Appl Environ Microbiol. 1991 Oct;57(10):2981-5 17316748 - Chemosphere. 2007 Jun;68(2):244-52 16085870 - Appl Environ Microbiol. 2005 Aug;71(8):4736-43 10483734 - FEMS Microbiol Lett. 1999 Sep 1;178(1):147-53 25418043 - Elife. 2014 Nov 24;3:null 14532060 - Appl Environ Microbiol. 2003 Oct;69(10):6041-6 16535693 - Appl Environ Microbiol. 1997 Sep;63(9):3607-13 8837426 - Appl Environ Microbiol. 1996 Oct;62(10 ):3704-11 7686000 - Appl Environ Microbiol. 1993 May;59(5):1444-51 12051652 - Biodegradation. 2001;12(6):465-75 2930535 - Biochem Biophys Res Commun. 1989 Mar 15;159(2):640-3 9531632 - Arch Microbiol. 1998 Apr;169(4):313-21 24428759 - Environ Microbiol. 2014 Nov;16(11):3387-97 21214238 - Environ Sci Technol. 2011 Feb 15;45(4):1555-62 20681521 - Environ Sci Technol. 2010 Sep 1;44(17):6829-34 3919642 - Appl Environ Microbiol. 1985 Jan;49(1):242-3 11064339 - Biotechnol Bioeng. 2000 Dec 20;70(6):693-8 18835999 - Appl Environ Microbiol. 2008 Dec;74(23):7313-20 16347956 - Appl Environ Microbiol. 1989 Jun;55(6):1624-9 2624467 - Appl Environ Microbiol. 1989 Nov;55(11):2960-4 19039669 - Biodegradation. 2009 Jun;20(3):419-31 18618788 - Biotechnol Bioeng. 1994 Aug 5;44(4):533-8 23160122 - Appl Environ Microbiol. 2013 Jan;79(2):663-71 15466590 - Appl Environ Microbiol. 2004 Oct;70(10):6347-51 9603807 - Appl Environ Microbiol. 1998 Jun;64(6):2006-12 8663199 - J Biol Chem. 1996 Jul 12;271(28):16515-9 15294827 - Appl Environ Microbiol. 2004 Aug;70(8):4880-8 9274009 - Microbiology. 1997 Aug;143 ( Pt 8):2557-67 7710331 - Arch Microbiol. 1995 Feb;163(2):96-103 16349505 - Appl Environ Microbiol. 1998 Feb;64(2):646-50 12523427 - Environ Sci Technol. 2002 Dec 1;36(23):5106-16 16349282 - Appl Environ Microbiol. 1994 Jun;60(6):1914-20 9696761 - J Bacteriol. 1998 Aug;180(16):4140-5 16104866 - Environ Microbiol. 2005 Sep;7(9):1442-50 15487929 - Annu Rev Microbiol. 2004;58:43-73 10671186 - Appl Environ Microbiol. 1998 Apr;64(4):1270-5 23204411 - Appl Environ Microbiol. 2013 Feb;79(3):974-81 18156252 - J Bacteriol. 2008 Mar;190(5):1539-45 14973036 - J Bacteriol. 2004 Mar;186(5):1337-44 9632263 - Mol Microbiol. 1998 May;28(3):615-28 19656942 - Int J Syst Evol Microbiol. 2010 Mar;60(Pt 3):686-95 11718337 - Environ Sci Technol. 2001 Nov 1;35(21):4242-51 7926693 - FEMS Microbiol Lett. 1994 Sep 1;121(3):357-63 16201659 - Environ Sci Technol. 2005 Sep 15;39(18):7279-86 4314232 - Biochemistry. 1970 Mar 31;9(7):1626-30 23093177 - Appl Microbiol Biotechnol. 2012 Dec;96(6):1395-409 17136537 - Appl Microbiol Biotechnol. 2007 Mar;74(4):857-66 26568785 - Stand Genomic Sci. 2015 Nov 14;10:102 2624462 - Appl Environ Microbiol. 1989 Nov;55(11):2819-26 8206853 - J Bacteriol. 1994 Jun;176(12 ):3749-56 3674872 - Appl Environ Microbiol. 1987 Sep;53(9):2129-32 22053874 - Mol Microbiol. 2012 Jan;83(1):24-40 11165358 - J Biotechnol. 2001 Feb 13;85(2):81-102 1327782 - Eur J Biochem. 1992 Oct 1;209(1):51-61 8900001 - Appl Environ Microbiol. 1996 Nov;62(11):4108-13 21566393 - Microbes Environ. 2009;24(4):330-7 1892384 - Appl Environ Microbiol. 1991 Jul;57(7):1935-41 12039726 - Appl Environ Microbiol. 2002 Jun;68(6):2726-30 10986246 - J Bacteriol. 2000 Oct;182(19):5433-9 1781729 - Arch Microbiol. 1991;156(2):152-8 3988708 - J Bacteriol. 1985 May;162(2):676-81 3145712 - Appl Environ Microbiol. 1988 Nov;54(11):2819-24 7487026 - Appl Environ Microbiol. 1995 Aug;61(8):2936-42 23600617 - FEMS Microbiol Lett. 2013 Jun;343(2):101-4 18804909 - J Hazard Mater. 2009 May 15;164(1):337-44 11351722 - Environ Sci Technol. 2001 Feb 1;35(3):516-21 7802545 - Arch Microbiol. 1994;162(4):295-301 18685265 - J Mol Microbiol Biotechnol. 2008;15(2-3):93-120 10888848 - Nat Biotechnol. 2000 Jul;18(7):775-8 16348920 - Appl Environ Microbiol. 1993 Apr;59(4):960-7 25015887 - Appl Environ Microbiol. 2014 Sep;80(18):5801-6 28042183 - Water Air Soil Pollut. 2017;228(1):25 15959725 - J Ind Microbiol Biotechnol. 2005 Dec;32(11-12):534-41 2019563 - J Bacteriol. 1991 May;173(9):3010-6 21450012 - Microb Biotechnol. 2011 Nov;4(6):710-24 20089043 - Environ Microbiol. 2010 Apr;12(4):1053-60 8975612 - Appl Environ Microbiol. 1996 Mar;62(3):825-33 22179245 - Appl Environ Microbiol. 2012 Feb;78(4):1288-91 3355147 - Appl Environ Microbiol. 1988 Feb;54(2):604-6 9171062 - Science. 1997 Jun 6;276(5318):1568-71 7574658 - Appl Environ Microbiol. 1995 Sep;61(9):3479-81 21288483 - Res Microbiol. 2011 Nov;162(9):869-76 20146755 - FEMS Microbiol Rev. 2010 Jul;34(4):445-75 26551549 - Environ Sci Technol. 2015 Dec 15;49(24):14319-25 11321104 - Int J Syst Evol Microbiol. 2001 Mar;51(Pt 2):581-8 9758777 - Appl Environ Microbiol. 1998 Oct;64(10):3626-32 15637277 - Science. 2005 Jan 7;307(5706):105-8 12788736 - Appl Environ Microbiol. 2003 Jun;69(6):3350-8 8572713 - Appl Environ Microbiol. 1996 Jan;62(1):61-6 8920197 - Appl Microbiol Biotechnol. 1996 Mar;45(1-2):248-56 1444418 - Appl Environ Microbiol. 1992 Sep;58(9):3038-46 2244785 - Arch Microbiol. 1990;154(4):336-41 23479748 - Philos Trans R Soc Lond B Biol Sci. 2013 Mar 11;368(1616):20120318 16349481 - Appl Environ Microbiol. 1998 Jan;64(1):208-15 15754184 - Appl Microbiol Biotechnol. 2005 Oct;68(6):794-801 8215370 - Appl Environ Microbiol. 1993 Sep;59(9):2991-7 8702263 - Appl Environ Microbiol. 1996 Aug;62(8):2716-22 17123579 - Chemosphere. 2007 Feb;67(2):300-11 12558180 - Res Microbiol. 2002 Dec;153(10):621-8 15184119 - Appl Environ Microbiol. 2004 Jun;70(6):3253-62 12902251 - Appl Environ Microbiol. 2003 Aug;69(8):4628-38 11291037 - Biotechnol Bioeng. 2000-2001;71(4):274-85 16642331 - Appl Microbiol Biotechnol. 2006 Oct;72(6):1270-5 23022446 - J Microbiol Methods. 2012 Dec;91(3):434-42 4039602 - Biochemistry. 1985 Jan 1;24(1):204-10 4298226 - Biochemistry. 1968 Jul;7(7):2653-62 2339874 - Appl Environ Microbiol. 1990 Apr;56(4):1169-71 1905516 - Appl Environ Microbiol. 1991 Apr;57(4):1031-7 22446308 - Microbes Environ. 2012;27(3):273-7 10744688 - J Biol Chem. 2000 Apr 7;275(14):10085-92 16345659 - Appl Environ Microbiol. 1980 Nov;40(5):950-8 15949858 - J Microbiol Methods. 2006 Feb;64(2):250-65 22544797 - Int J Syst Evol Microbiol. 2013 Feb;63(Pt 2):625-35 11414323 - Appl Microbiol Biotechnol. 2001 May;55(5):571-7 27016563 - Appl Environ Microbiol. 2016 May 16;82(11):3269-79 14971854 - Biodegradation. 2004 Feb;15(1):19-28 2515801 - Appl Environ Microbiol. 1989 Dec;55(12):3155-61 16349516 - Appl Environ Microbiol. 1998 Mar;64(3):1106-14 1599242 - Appl Environ Microbiol. 1992 Apr;58(4):1220-6 16347139 - Appl Environ Microbiol. 1986 Aug;52(2):383-4 22616984 - BMC Genomics. 2012 May 22;13:200 20357835 - ISME J. 2010 Aug;4(8):1020-30 10583967 - Appl Environ Microbiol. 1999 Dec;65(12):5212-21 3415234 - Appl Environ Microbiol. 1988 Jul;54(7):1703-8 16517646 - Appl Environ Microbiol. 2006 Mar;72(3):1980-7 15126473 - J Bacteriol. 2004 May;186(10):3117-23 15240250 - Appl Environ Microbiol. 2004 Jul;70(7):3814-20 25278505 - Science. 2014 Oct 24;346(6208):455-8 20695893 - FEMS Microbiol Ecol. 2010 Nov;74(2):257-75 16997980 - Appl Environ Microbiol. 2006 Nov;72(11):7418-21 19756804 - Environ Sci Pollut Res Int. 2010 Jan;17(1):64-77 7867951 - Gene. 1995 Feb 27;154(1):65-70 3606099 - Appl Environ Microbiol. 1987 May;53(5):949-54 24441515 - Microbes Environ. 2014;29(1):23-30 12949106 - J Bacteriol. 2003 Sep;185(18):5536-45 19633106 - Appl Environ Microbiol. 2009 Sep;75(18):5910-8 16535402 - Appl Environ Microbiol. 1996 Sep;62(9):3304-12 1176436 - J Bacteriol. 1975 Oct;124(1):7-13 |
References_xml | – reference: 47. Elango, V.K., A.S. Liggenstoffer, and B.Z. Fathepure. 2006. Biodegradation of vinyl chloride and cis-dichloroethene by a Ralstonia sp. strain TRW-1. Appl Microbiol Biotechnol. 72:1270-1275. – reference: 76. Justicia-Leon, S.D., K.M. Ritalahti, E.E. Mack, and F.E. Löffer. 2012. Dichloromethane fermentation by a Dehalobacter sp. in an enrichment culture derived from river sediment. Appl Environ Microbiol. 78:1288-1291. – reference: 86. Kittelmann, S., and M.W. Friedrich. 2008. Identification of novel perchloroethene-respiring microorganisms in anoxic river sediment by RNA-based stable isotope probing. Environ Microbiol. 10:31-46. – reference: 121. Ministry of the Environment, Japan. 2016. Results of the survey on implementation of soil contamination countermeasures act and cases of investigation and countermeasures in 2014. Ministry of the Environment, Japan, Tokyo. (In Japanese). – reference: 117. Maymó-Gatell, X., I. Nijenhuis, and S.H. Zinder. 2001. Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by “Dehalococcoides ethenogenes”. Environ Sci Technol. 35:516-521. – reference: 196. Wackett, L.P., G.A. Brusseau, S.R. Householder, and R.S. Hanson. 1989. Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Appl Environ Microbiol. 55:2960-2964. – reference: 105. Mägli, A., M. Messmer, and T. Leisinger. 1998. Metabolism of dichloromethane by strict anaerobic Dehalobacterium formicoaceticum. Appl Environ Microbiol. 64:646-650. – reference: 200. Whited, G.M., and D.T. Gibson. 1991. Toluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1. J Bacteriol. 173:3010-3016. – reference: 187. van Hylckama Vlieg, J.E.T., W. de Koning, and D.B. Janssen. 1996. Transformation kinetics of chlorinated ethenes by Methylosinus trichosporium OB3b and detection of unstable epoxides by on-line gas chromatography. Appl Environ Microbiol. 62:3304-3312. – reference: 111. Marco-Urrea, E., I. Nijenhuis, and L. Adrian. 2011. Transformation and carbon isotope fractionation of tetra- and trichloroethene to trans-dichloroethene by Dehalococcoides sp. strain CBDB1. Environ Sci Technol. 45:1555-1562. – reference: 158. Seshadri, R., L. Adrian, D.E. Fouts, et al. 2005. Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science. 307:105-108. – reference: 70. Holliger, C., G. Schraa, A.J.M. Stams, and A.J.B. Zehnder. 1993. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl Environ Microbiol. 59:2991-2997. – reference: 178. United States Environmental Protection Agency. 2011. First fiveyear review joint base Andrews naval air facility Washington. United States Environmental Protection Agency, Washington, DC. – reference: 58. Gibson, D.T., M. Hensley, H. Yoshioka, and T.J. Mabry. 1970. Formation of (+)-cis-2,3-dihydroxy-1-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida. Biochemistry. 9:1626-1630. – reference: 90. Kohler-Staub, D., and T. Leisinger. 1985. Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2. J Bacteriol. 162:676-681. – reference: 60. Goris, T., B. Hornung, T. Kruse, A. Reinhold, M. Westermann, P.J. Schaap, H. Smidt, and G. Diekert. 2015. Draft genome sequence and characterization of Desulfitobacterium hafniense PCE-S. Stand Genomic Sci. 10:15. – reference: 203. Yamada, A., H. Kishi, K. Sugiyama, T. Hatta, K. Nakamura, E. Masai, and M. Fukuda. 1998. Two nearly identical aromatic compound hydrolase genes in a strong polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1. Appl Environ Microbiol. 64:2006-2012. – reference: 56. Gerritse, J., O. Drzyzga, G. Kloetstra, M. Keijmel, L.P. Wiersum, R. Hutson, M.D. Collins, and J.C. Gottschal. 1999. Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl Environ Microbiol. 65:5212-5221. – reference: 192. Verce, M.F., R.L. Ulrich, and D.L. Freedman. 2001. Transition from cometabolic to growth-linked biodegradation of vinyl chloride by a Pseudomonas sp. isolated on ethene. Environ Sci Technol. 35:4242-4251. – reference: 189. Vannelli, T., M. Logan, D.M. Arciero, and A.B. Hooper. 1990. Degradation of halogenated aliphatic compounds by the ammoniaoxidizing bacterium Nitrosomonas europaea. Appl Environ Microbiol. 56:1169-1171. – reference: 122. Miura, T., A. Yamazoe, M. Ito, S. Ohji, A. Hosoyama, Y. Takahata, and N. Fujita. 2015. The impact of injections of different nutrients on the bacterial community and its dechlorination activity in chloroethene-contaminated groundwater. Microbes Environ. 30:164-171. – reference: 191. Verce, M.F., and D.L. Freedman. 2000. Modeling the kinetics of vinyl chloride cometabolism by an ethane-grown Pseudomonas sp. Biotechnol Bioeng. 71:274-285. – reference: 119. McClay, K., B.G. Fox, and R.J. Steffan. 1996. Chloroform mineralization by toluene-oxidizing bacteria. Appl Environ Microbiol. 62:2716-2722. – reference: 10. Arciero, D., T. Vannelli, M. Logan, and A.B. Hooper. 1989. Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea. Biochem Biophys Res Commun. 159:640-643. – reference: 108. Maillard, J., W. Schumacher, F. Vazquez, C. Regeard, W.R. Hagen, and C. Holliger. 2003. Characterization of the corrinoid iron-sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus. Appl Environ Microbiol. 69:4628-4638. – reference: 14. Baldwin, B.R., C.H. Nakatsu, and L. Nies. 2003. Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Appl Environ Microbiol. 69:3350-3358. – reference: 28. Cappelletti, M., D. Frascari, D. Zannoni, and S. Fedi. 2012. Microbial degradation of chloroform. Appl Microbiol Biotechnol. 96:1395-1409. – reference: 64. Hartmans, S., J.A.M. de Bont, J. Tramper, and K.Ch.A.M. Luyben. 1985. Bacterial degradation of vinyl chloride. Biotechnol Lett. 7:383-386. – reference: 128. Muller, E.E.L., E. Hourcade, Y. Louhichi-Jelail, P. Hammann, S. Vuilleumier, and F. Bringel. 2011. Functional genomics of dichloromethane utilization in Methylobacterium extorquens DM4. Environ Microbiol. 13:2518-2535. – reference: 175. Uchino, Y., T. Miura, A. Hosoyama, S. Ohji, A. Yamazoe, M. Ito, Y. Takahata, K. Suzuki, and N. Fujita. 2015. Complete genome sequencing of Dehalococcoides sp. strain UCH007 using a differential reads picking method. Stand Genomic Sci. 10:102. – reference: 51. Ensign, S.A. 1996. Aliphatic and chlorinated alkenes and epoxides as inducers of alkene monooxygenase and epoxidase activities in Xanthobacter strain Py2. Appl Environ Microbiol. 62:61-66. – reference: 146. Penny, C., S. Vuilleumier, and F. Bringel. 2010. Microbial degradation of tetrachloromethane: mechanisms and perspectives for bioremediation. FEMS Microbiol Ecol. 74:257-275. – reference: 94. Krumholz, L.R., R. Sharp, and S. Fishbain. 1996. A freshwater anaerobe coupling acetate oxidation to tetrachloroethene dehalogenation. Appl Environ Microbiol. 62:4108-4113. – reference: 50. Ensign, S.A., M.R. Hyman, and D.J. Arp. 1992. Cometabolic degradation of chlorinated alkenes by alken monooxygenase in a propylene-grown Xanthobacter strain. Appl Environ Microbiol. 58:3038-3046. – reference: 124. Moreno, R., and F. Rojo. 2008. The target for the Pseudomonas putida Crc global regulator in the benzoate degradation pathway is the BenR transcriptional regulator. J Bacteriol. 190:1539-1545. – reference: 184. United States Environmental Protection Agency. 2014. Third fiveyear review report for parker landfill superfund site, SDMS Doc ID 567594. United States Environmental Protection Agency, Washington, DC. – reference: 202. Worsey, M.J., and P.A. Williams. 1975. Metabolism of toluene and xylenes by Pseudomonas (putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J Bacteriol. 124:7-13. – reference: 100. Leuthner, B., C. Leutwein, H. Schulz, P. Hörth, W. Haehnel, E. Schiltz, H. Schägger, and J. Heider. 1998. Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol Microbiol. 28:615-628. – reference: 33. Choi, E.J., H.M. Jin, S.H. Lee, R.K. Math, E.L. Madsen, and C.O. Jeon. 2013. Comparative genomic analysis and benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) degradation pathways of Pseudoxanthomonas spadix BD-a59. Appl Environ Microbiol. 79:663-671. – reference: 71. Holliger, C., D. Hahn, H. Harmsen, W. Ludwig, W. Schumacher, B. Tindall, F. Vazquez, N. Weiss, and A.J.B. Zehnder. 1998. Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch Microbiol. 169:313-321. – reference: 83. Kim, J.M., N.T. Le, B.S. Chung, J.H. Park, J.W. Bae, E.L. Madsen, and C.O. Jeon. 2008. Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl Environ Microbiol. 74:7313-7320. – reference: 81. Kayser, M.F., M.T. Stumpp, and S. Vuilleumier. 2000. DNA polymerase I is essential for growth of Methylobacterium dichloromethanicum DM4 with dichloromethane. J Bacteriol. 182:5433-5439. – reference: 39. Coleman, N.V., and J.C. Spain. 2003. Epoxyalkane: coenzyme M transferase in the ethene and vinyl chloride biodegradation pathways of Mycobacterium strain JS60. J Bacteriol. 185:5536-5545. – reference: 118. McClay, K., S.H. Streger, and R.J. Steffan. 1995. Induction of toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 by chlorinated solvents and alkanes. Appl Environ Microbiol. 61:3479-3481. – reference: 132. Nelson, M.J.K., S.O. Montgomery, E.J. O’Neill, and P.H. Pritchard. 1986. Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl Environ Microbiol. 52:383-384. – reference: 57. Gibson, D.T., J.R. Koch, and R.E. Kallio. 1968. Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry. 7:2653-2662. – reference: 40. Coleman, N.V., and J.C. Spain. 2003. Distribution of the coenzyme M pathway of epoxide metabolism among ethene- and vinyl chloride-degrading Mycobacterium strains. Appl Environ Microbiol. 69:6041-6046. – reference: 123. Morales, G., J.F. Linares, A. Beloso, J.P. Albar, J.L. Martínez, and F. Rojo. 2004. The Pseudomonas putida Crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds. J Bacteriol. 186:1337-1344. – reference: 157. Scholz-Muramatsu, H., A. Neumann, M. Meßmer, E. Moore, and G. Diekert. 1995. Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol. 163:48-56. – reference: 142. Oldenhuis, R., R.L. Vink, D.B. Janssen, and B. Witholt. 1989. Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl Environ Microbiol. 55:2819-2826. – reference: 186. van Agteren, M.H., S. Keuning, and D.B. Janssen. 1998. Handbook on biodegradation and biological treatment of hazardous organic compounds. Kluwer Academic Publishers, Dordrecht, Netherland. – reference: 73. Im, J., and J.D. Semrau. 2011. Pollutant degradation by a Methylocystis strain SB2 grown on ethanol: bioremediation via facultative methanotrophy. FEMS Microbiol Lett. 318:137-142. – reference: 11. Aziz, C.E., G. Georgiou, and G.E. Speitel, Jr. 1999. Cometabolism of chlorinated solvents and binary chlorinated solvent mixtures using M. trichosporium OB3b PP358. Biotechnol Bioeng. 65:100-107. – reference: 188. van Hylckama Vlieg, J.E.T., and D.B. Janssen. 2001. Formation and detoxification of reactive intermediates in the metabolism of chlorinated ethenes. J Biotechnol. 85:81-102. – reference: 72. Hüsken, L.E., R. Beeftink, J.A. de Bont, and J. Wery. 2001. High-rate 3-methylcatechol production in Pseudomonas putida strains by means of a novel expression system. Appl Microbiol Biotechnol. 55:571-577. – reference: 19. Bertoni, G., M. Martino, E. Galli, and P. Barbieri. 1998. Analysis of the gene cluster encoding toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1. Appl Environ Microbiol. 64:3626-3632. – reference: 9. Aranda-Olmedo, I., P. Marín, J.L. Ramos, and S. Marqués. 2006. Role of the ptsN gene product in catabolite repression of the Pseudomonas putida TOL toluene degradation pathway in chemostat cultures. Appl Environ Microbiol. 72:7418-7421. – reference: 140. Noguchi, M., F. Kurisu, I. Kasuga, and H. Furumai. 2014. Time-resolved DNA stable isotope probing links Desuldobacterales- and Coriobacteriaceae-related bacteria to anaerobic degradation of benzene under methanogenic conditions. Microbes Environ. 29:191-199. – reference: 164. Smidt, H., and W.M. de Vos. 2004. Anaerobic microbial dehalogenation. Annu Rev Microbiol. 58:43-73. – reference: 20. Bommer, M., C. Kunze, J. Fesseler, T. Schubert, G. Diekert, and H. Dobbek. 2014. Structural basis for organohalide respiration. Science. 346:455-458. – reference: 136. Neumann, A., G. Wohlfarth, and G. Diekert. 1996. Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans. J Biol Chem. 271:16515-16519. – reference: 152. Radway, J.C., J.W. Santo Domingo, T.C. Hazen, and E.W. Wilde. 1998. Evaluation of biodegradation potential of foam embedded Burkholderia cepacia G4. Biotechnol Lett. 20:663-666. – reference: 23. Brunner, W., D. Staub, and T. Leisinger. 1980. Bacterial degradation of dichloromethane. Appl Environ Microbiol. 40:950-958. – reference: 84. Kitayama, A., T. Achioku, T. Yanagawa, K. Kanou, M. Kikuchi, H. Ueda, E. Suzuki, H. Nishimura, T. Nagamune, and Y. Kawakami. 1996. Cloning and characterization of extradiol aromatic ring-cleavage dioxygenases of Pseudomonas aeruginosa JI104. J Ferment Bioeng. 82:217-223. – reference: 1. Achong, G.R., A.M. Rodriguez, and A.M. Spormann. 2001. Benzylsuccinate synthase of Azoarcus sp. strain T: cloning, sequencing, transcriptional organization, and its role in anaerobic toluene and m-xylene mineralization. J Bacteriol. 183:6763-6770. – reference: 12. Baggi, G., P. Barbieri, E. Galli, and S. Tollari. 1987. Isolation of a Pseudomonas stutzeri strain that degrades o-xylene. Appl Environ Microbiol. 53:2129-2132. – reference: 110. Major, D.W., M.L. McMaster, E.E. Cox, E.A. Edwards, S.M. Dworatzek, E.R. Hendrickson, M.G. Starr, J.A. Payne, and L.W. Buonamici. 2002. Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol. 36:5106-5116. – reference: 156. Schmid-Appert, M., K. Zoller, H. Traber, S. Vuilleumier, and T. Leisinger. 1997. Association of newly discovered IS elements with the dichloromethane utilization genes of methylotrophic bacteria. Microbiology. 143:2557-2567. – reference: 15. Baldwin, B.R., A. Biernacki, J. Blair, M.P. Purchase, J.M. Baker, K. Sublette, G. Davis, and D. Ogles. 2010. Monitoring gene expression to evaluate oxygen infusion at a gasoline-contaminated site. Environ Sci Technol. 44:6829-6834. – reference: 109. Maithreepala, R.A., and R.A. Doong. 2009. Transformation of carbon tetrachloride by biogenic iron species in the presence of Geobacter sulfurreducens and electron shuttles. J Hazard Mater. 164:337-344. – reference: 92. Krone, U.E., K. Laufer, R.K. Thauer, and H.P. Hogenkamp. 1989. Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated C1 hydrocarbons in methanogenic bacteria. Biochemistry. 28:10061-10065. – reference: 198. Wang, S., K.R. Chng, C. Chen, D.L. Bedard, and J. He. 2015. Genomic characterization of Dehalococcoides mccartyi strain JNA that reductively dechlorinates tetrachloroethene and polychlorinated biphenyls. Environ Sci Technol. 49:14319-14325. – reference: 139. Nijenhuis, I., M. Nikolausz, A. Koth, T. Felfoldi, H. Weiss, J. Drangmeister, J. Grobmann, M. Kastner, and H.-H. Richnow. 2007. Assessment of the natural attenuation of chlorinated ethenes in an anaerobic contaminated aquifer in the Bitterfeld/Wolfen area using stable isotope techniques, microcosm studies and molecular biomarkers. Chemosphere. 67:300-311. – reference: 32. Cheng, D., and J. He. 2009. Isolation and characterization of “Dehalococcoides” sp. strain MB, which dechlorinates tetrachloroethene to trans-1,2-dichloroethene. Appl Environ Microbiol. 75:5910-5918. – reference: 131. Nagarajan, K., and K.C. Loh. 2015. Formulation of microbial cocktails for BTEX biodegradation. Biodegradation. 26:51-63. – reference: 180. United States Environmental Protection Agency. 2012. Fourth five-year review report, The Rose Township dump site Oakland County, Michigan. United States Environmental Protection Agency, Washington, DC. – reference: 22. Bradley, P.M., and F.H. Chapelle. 2002. Microbial mineralization of ethene under sulfate-reducing conditions. Bioremediat J. 6:1-8. – reference: 88. Koenig, J.C., K.D. Groissmeier, and M.J. Manefield. 2014. Tolerance of anaerobic bacteria to chlorinated solvents. Microbes Environ. 29:23-30. – reference: 199. Weelink, S.A.B., M.H.A. van Eekert, and A.J.M. Stams. 2010. Degradation of BTEX by anaerobic bacteria: physiology and application. Rev Environ Sci Biotechnol. 9:359-385. – reference: 6. Alvarez, P.J., and T.M. Vogel. 1991. Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl Environ Microbiol. 57:2981-2985. – reference: 120. Michener, J.K., A.A. Camargo Neves, S. Vuilleumier, F. Bringel, and C.J. Marx. 2014. Effective use of a horizontally-transferred pathway for dichloromethane catabolism requires post-transfer refinement. Elife. 3:e04279. – reference: 2. Adamson, D.T., and G.F. Parkin. 2000. Impact of mixtures of chlorinated aliphatic hydrocarbons on a high-rate, tetrachloroethenedechlorinating enrichment culture. Environ Sci Technol. 34:1959-1965. – reference: 149. Priya, V.S., and L. Philip. 2013. Biodegradation of dichloromethane along with other VOCs from pharmaceutical wastewater. Appl Biochem Biotechnol. 169:1197-1218. – reference: 130. Muñoz, R., L.F. Díaz, S. Bordel, and S. Villaverde. 2007. Inhibitory effects of catechol accumulation on benzene biodegradation in Pseudomonas putida F1 cultures. Chemosphere. 68:244-252. – reference: 204. Yang, X., D. Beckmann, S. Fiorenza, and C. Niedermeier. 2005. Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater. Environ Sci Technol. 39:7279-7286. – reference: 194. Vogt, C., S. Kleinsteuber, and H.H. Richnow. 2011. Anaerobic benzene degradation by bacteria. Microb Biotechnol. 4:710-724. – reference: 159. Shaw, J.P., and S. Harayama. 1992. Purification and characterisation of the NADH:acceptor reductase component of xylene monooxygenase encoded by the TOL plasmid pWW0 of Pseudomonas putida mt-2. Eur J Biochem. 209:51-61. – reference: 205. Yarmoff, J.J., Y. Kawakami, T. Yago, H. Maruo, and H. Nishimura. 1988. cis-Benzeneglycol production using a mutant Pseudomonas strain. J Ferment Technol. 66:305-312. – reference: 68. Hendrickx, B., H. Junca, J. Vosahlova, et al. 2006. Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site. J Microbiol Methods. 64:250-265. – reference: 211. Zylstra, G.J., W.R. McCombie, D.T. Gibson, and B.A. Finette. 1988. Toluene degradation by Pseudomonas putida F1: genetic organization of the tod operon. Appl Environ Microbiol. 54:1498-1503. – reference: 95. Krumholz, L.R. 1997. Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int J Syst Bacteriol. 47:1262-1263. – reference: 210. Zhang, M., and M. Yoshikawa. 2016. An overview of remediation technologies for sites contaminated with volatile organic compounds, p.295-301. Proceedings of Geo-Chicago 2016: Sustainability, Energy, and the Geoenvironment. ASCE Geotechnical Special Publication, Reston. – reference: 93. Krone, U.E., R.K. Thauer, and H.P.C. Hogenkamp. 1989. Reductive dehalogenation of chlorinated C1-hydrocarbons mediated by corrinoids. Biochemistry. 28:4908-4914. – reference: 75. Interstate Technology & Regulatory Council. 2013. Environmental Molecular Diagnostics, New Site Characterization and Remediation Enhancement Tools. EMD-2. Interstate Technology & Regulatory Council, Environmental Molecular Diagnostics Team, Washington, DC. – reference: 27. Cafaro, V., E. Notomista, P. Capasso, and A. Di Donato. 2005. Regiospecificity of two multicomponent monooxygenases from Pseudomonas stutzeri OX1: molecular basis for catabolic adaptation of this microorganism to methylated aromatic compounds. Appl Environ Microbiol. 71:4736-4743. – reference: 67. He, J., Y. Sung, R. Krajmalnik-Brown, K.M. Ritalahti, and F.E. Löffler. 2005. Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)—and 1,2-dichloroethene-respiring anaerobe. Environ Microbiol. 7:1442-1450. – reference: 42. Ding, C., S. Zhao, and J. He. 2014. A Desulfitobacterium sp. strain PR reductively dechlorinates both 1,1,1-trichloroethane and chloroform. Environ Microbiol. 16:3387-3397. – reference: 153. Reij, M.W., J. Kieboom, J.A.M. de Bont, and S. Hartmans. 1995. Continuous degradation of trichloroethylene by Xanthobacter sp. strain Py2 during growth on propene. Appl Environ Microbiol. 61:2936-2942. – reference: 62. Halsey, K.H., L.A. Sayavedra-Soto, P.J. Bottomley, and D.J. Arp. 2005. Trichloroethylene degradation by butane-oxidizing bacteria causes a spectrum of toxic effects. Appl Microbiol Biotechnol. 68:794-801. – reference: 114. Martínez, C.M., L.H. Alvarez, and F.J. Cervantes. 2012. Simultaneous biodegradation of phenol and carbon tetrachloride mediated by humic acids. Biodegradation. 23:635-644. – reference: 147. Petrovskis, E.A., T.M. Vogel, and P. Adriaens. 1994. Effects of electron acceptors and donors on transformation of tetrachloromethane by Shewanella putrefaciens MR-1. FEMS Microbiol Lett. 121:357-363. – reference: 26. Byrne, A.M., J.J. Kukor, and R.H. Olsen. 1995. Sequence analysis of the gene cluster encoding toluene-3-monooxygenase from Pseudomonas pickettii PKO1. Gene. 154:65-70. – reference: 197. Wagner, D.D., L.A. Hug, J.K. Hatt, M.R. Spitzmiller, E. Padilla-Crespo, K.M. Ritalahti, E.A. Edwards, K.T. Konstantinidis, and F.E. Löffler. 2012. Genomic determinants of organohalide-respiration in Geobacter lovleyi, an unusual member of the Geobacteraceae. BMC Genomics. 13:200. – reference: 25. Bühler, B., A. Schmid, B. Hauer, and B. Witholt. 2000. Xylene monooxygenase catalyzes the multistep oxygenation of toluene and pseudocumene to corresponding alcohols, aldehydes, and acids in Escherichia coli JM101. J Biol Chem. 275:10085-10092. – reference: 37. Coates, J.D., R. Chakraborty, and M.J. McInerney. 2002. Anaerobic benzene biodegradation—a new era. Res Microbiol. 153:621-628. – reference: 89. Koh, S.C., J.P. Bowman, and G.S. Sayler. 1993. Soluble methane monooxygenase production and trichloroethylene degradation by a type I methanotroph, Methylomonas methanica 68-1. Appl Environ Microbiol. 59:960-967. – reference: 125. Moreno, R., P. Fonseca, and F. Rojo. 2010. The Crc global regulator inhibits the Pseudomonas putida pWW0 toluene/xylene assimilation pathway by repressing the translation of regulatory and structural genes. J Biol Chem. 285:24412-24419. – reference: 129. Müller, J.A., B.M. Rosner, G. Abendroth, G. Meshulam-Simon, P.L. McCarty, and A.M. Spormann. 2004. Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl Environ Microbiol. 70:4880-4888. – reference: 91. Krajmalnik-Brown, R., T. Hölscher, I.N. Thomson, F. Michael Saunders, K.M. Ritalahti, and F.E. Löffler. 2004. Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Appl Environ Microbiol. 70:6347-6351. – reference: 82. Keener, W.K., and D.J. Arp. 1994. Transformations of aromatic compounds by Nitrosomonas europaea. Appl Environ Microbiol. 60:1914-1920. – reference: 97. Kunapuli, U., M.K. Jahn, T. Lueders, R. Geyer, H.J. Heipieper, and R.U. Meckenstock. 2010. Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. Int J Syst Evol Microbiol. 60:686-695. – reference: 170. Tang, S., Y. Gong, and E.A. Edwards. 2012. Semi-automatic in silico gap closure enabled de novo assembly of two Dehalobacter genomes from metagenomic data. PLoS ONE. 7:e52038. – reference: 17. Beller, H.R., and A.M. Spormann. 1999. Substrate range of benzylsuccinate synthase from Azoarcus sp. strain T. FEMS Microbiol Lett. 178:147-153. – reference: 65. Hartmans, S., and J.A.M. de Bont. 1992. Aerobic vinyl chloride metabolism in Mycobacterium aurum L1. Appl Environ Microbiol. 58:1220-1226. – reference: 103. Lontoh, S., and J.D. Semrau. 1998. Methane and trichloroethylene degradation by Methylosinus trichosporium OB3b expressing particulate methane monooxygenase. Appl Environ Microbiol. 64:1106-1114. – reference: 43. DiSpirito, A.A., J. Gulledge, A.K. Shiemke, J.C. Murrell, M.E. Lidstrom, and C.L. Krema. 1992. Trichloroethylene oxidation by the membrane-associated methane monooxygenase in type I, type II, and type X methanotrophs. Biodegradation. 2:151-164. – reference: 53. Foght, J. 2008. Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Microbiol Biotechnol. 15:93-120. – reference: 104. Mägli, A., M. Wendt, and T. Leisinger. 1996. Isolation and characterization of Dehalobacterium formicoaceticum gen. nov. sp. nov., a strictly anaerobic bacterium utilizing dichloromethane as source of carbon and energy. Arch Microbiol. 166:101-108. – reference: 113. Martin, K.E., J. Ozsvar, and N.V. Coleman. 2014. SmoXYB1C1Z of Mycobacterium sp. strain NBB4: a soluble methane monooxygenase (sMMO)-like enzyme, active on C2 to C4 alkanes and alkenes. Appl Environ Microbiol. 80:5801-5806. – reference: 4. Alexander, M. 1994. Biodegradation and Bioremediation. Academic Press, San Diego. – reference: 31. Chauhan, S., P. Barbieri, and T.K. Wood. 1998. Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1. Appl Environ Microbiol. 64:3023-3024. – reference: 13. Bagley, D.M., M. Lalonde, V. Kaseros, K.E. Stasiuk, and B.E. Sleep. 2000. Acclimation of anaerobic systems to biodegrade tetrachloroethene in the presence of carbon tetrachloride and chloroform. Water Res. 34:171-178. – reference: 41. Deutscher, J. 2008. The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol. 11:87-93. – reference: 115. Mattes, T.E., A.K. Alexander, and N.V. Coleman. 2010. Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol Rev. 34:445-475. – reference: 145. Patrauchan, M.A., C. Florizone, S. Eapen, L. Gómez-Gil, B. Sethuraman, M. Fukuda, J. Davies, W.W. Mohn, and L.D. Eltis. 2008. Roles of ring-hydroxylating dioxygenases in styrene and benzene catabolism in Rhodococcus jostii RHA1. J Bacteriol. 190:37-47. – reference: 173. Tao, Y., A. Fishman, W.E. Bentley, and T.K. Wood. 2004. Oxidation of benzene to phenol, catechol, and 1,2,3-trihydroxybenzene by toluene 4-monooxygenase of Pseudomonas mendocina KR1 and toluene 3-monooxygenase of Ralstonia pickettii PKO1. Appl Environ Microbiol. 70:3814-3820. – reference: 77. Juwarkar, A.A., S.K. Singh, and A. Mudhoo. 2010. A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol. 9:215-288. – reference: 168. Suyama, A., M. Yamashita, S. Yoshino, and K. Furukawa. 2002. Molecular characterization of the PceA reductive dehalogenase of Desulfitobacterium sp. strain Y51. J Bacteriol. 184:3419-3425. – reference: 106. Magnuson, J.K., R.V. Stern, J.M. Gossett, S.H. Zinder, and D.R. Burris. 1998. Reductive dechlorination of tetrachloroethene to ethene by a two-component enzyme pathway. Appl Environ Microbiol. 64:1270-1275. – reference: 143. Olsen, R.H., J.J. Kukor, and B. Kaphammer. 1994. A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PKO1. J Bacteriol. 176:3749-3756. – reference: 162. Shim, H., and T.K. Wood. 2000. Aerobic degradation of mixtures of chlorinated aliphatics by cloned toluene-o-xylene monooxygenase and toluene o-monooxygenase in resting cells. Biotechnol Bioeng. 70:693-698. – reference: 16. Ball, H.A., H.A. Johnson, M. Reinhard, and A.M. Spormann. 1996. Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1. J Bacteriol. 178:5755-5761. – reference: 18. Bertoni, G., F. Bolognese, E. Galli, and P. Barbieri. 1996. Cloning of the genes for and characterization of the early stages of toluene and o-xylene catabolism in Pseudomonas stutzeri OX1. Appl Environ Microbiol. 62:3704-3711. – reference: 169. Suzuki, M., T. Hayakawa, J.P. Shaw, M. Rekik, and S. Harayama. 1991. Primary structure of xylene monooxygenase: similarities to and differences from the alkane hydroxylation system. J Bacteriol. 173:1690-1695. – reference: 54. Furukawa, K., A. Suyama, Y. Tsuboi, T. Futagami, and M. Goto. 2005. Biochemical and molecular characterization of a tetrachloroethene dechlorinating Desulfitobacterium sp. strain Y51: a review. J Ind Microbiol Biotechnol. 32:534-541. – reference: 30. Chapman, S.W., B.T. Byerley, D.J.A. Smyth, and D.M. Mackay. 1997. A pilot test of passive oxygen release for enhancement of in situ bioremediation of BTEX-contaminated ground water. Ground Water Monit Remed. 17:93-105. – reference: 101. Liu, X., and T.E. Mattes. 2016. Epoxyalkane:coenzyme M transferase gene diversity and distribution in groundwater samples from chlorinated-ethene-contaminated sites. Appl Environ Microbiol. 82:3269-3279. – reference: 183. United States Environmental Protection Agency. 2014. Basewide five-year reviews Dover air force base, Delaware. United States Environmental Protection Agency, Washington, DC. – reference: 167. Sung, Y., K.M. Ritalahti, R.P. Apkarian, and F.E. Löffler. 2006. Quantitative PCR confirms purity of strain GT, a novel trichloroetheneto-ethene-respiring Dehalococcoides isolate. Appl Environ Microbiol. 72:1980-1987. – reference: 99. Lee, E.-H., J. Kim, K.-S. Cho, Y.G. Ahn, and G.-S. Hwang. 2010. Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831. Environ Sci Poll Res. 17:64-77. – reference: 63. Hamamura, N., C. Page, T. Long, L. Semprini, and D.J. Arp. 1997. Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and methane-grown Methylosinus trichosporium OB3b. Appl Environ Microbiol. 63:3607-3613. – reference: 133. Nelson, M.J.K., S.O. Montgomery, W.R. Mahaffey, and P.H. Pritchard. 1987. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl Environ Microbiol. 53:949-954. – reference: 208. Yoshikawa, M., M. Zhang, and K. Toyota. 2017. Integrated anaerobic-aerobic biodegradation of multiple contaminants including chlorinated ethylenes, benzene, toluene and dichloromethane. Water Air Soil Pollut. 228:25. – reference: 182. United States Environmental Protection Agency. 2013. Introduction to in situ bioremediation of groundwater. United States Environmental Protection AgencyEPA 542-R-13-018Washington, DC. – reference: 148. Pöritz, M., T. Goris, T. Wubet, M.T. Tarkka, F. Buscot, I. Nijenhuis, U. Lechner, and L. Adrian. 2013. Genome sequences of two dehalogenation specialists—Dehalococcoides mccartyi strains BTF08 and DCMB5 enriched from the highly polluted Bitterfeld region. FEMS Microbiol Lett. 343:101-104. – reference: 206. Yeager, C.M., K.M. Arthur, P.J. Bottomley, and D.J. Arp. 2004. Trichloroethylene degradation by toluene-oxidizing bacteria grown on non-aromatic substrates. Biodegradation. 15:19-28. – reference: 87. Koenig, J.C., M.J. Lee, and M. Manefield. 2012. Successful microcosm demonstration of a strategy for biodegradation of a mixture of carbon tetrachloride and perchloroethene harnessing sulfate reducing and dehalorespiring bacteria. J Hazard Mater. 219–220:169-175. – reference: 160. Shields, M.S., S.O. Montgomery, P.J. Chapman, S.M. Cuskey, and P.H. Pritchard. 1989. Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4. Appl Environ Microbiol. 55:1624-1629. – reference: 29. Castro, C.E., R.S. Wade, and N.O. Belser. 1985. Biodehalogenation: reactions of cytochrome P-450 with polyhalomethanes. Biochemistry. 24:204-210. – reference: 177. United States Environmental Protection Agency. 2008. Final comprehensive five-year ROD review report, Third five-year ROD review for Allegany Ballistics Laboratory. United States Environmental Protection Agency, Washington, DC. – reference: 172. Tang, S., and E.A. Edwards. 2013. Identification of Dehalobacter reductive dehalogenases that catalyse dechlorination of chloroform, 1,1,1-trichloroethane and 1,1-dichloroethane. Philos Trans R Soc Lond, B, Biol Sci. 368:20120318. – reference: 151. Rabus, R., and F. Widdel. 1995. Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol. 163:96-103. – reference: 44. Dolfing, J., J. Zeyer, E.P. Binder, and R.P. Schwarzenbach. 1990. Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen. Arch Microbiol. 154:336-341. – reference: 201. Wilson, J.T., and B.H. Wilson. 1985. Biotransformation of trichloroethylene in soil. Appl Environ Microbiol. 49:242-243. – reference: 150. Rabus, R., R. Nordhaus, W. Ludwig, and F. Widdel. 1993. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol. 59:1444-1451. – reference: 171. Tang, S., W.W.M. Chan, K.E. Fletcher, J. Seifert, X. Liang, F.E. Löffler, E.A. Edwards, and L. Adrian. 2013. Functional characterization of reductive dehalogenases by using blue native polyacrylamide gel electrophoresis. Appl Environ Microbiol. 79:974-981. – reference: 96. Kuhn, E.P., P.J. Colberg, J.L. Schnoor, O. Wanner, A.J.P. Zehnder, and R.P. Schwarzenbach. 1985. Microbial transformations of substituted benzenes during infiltration of river water to groundwater: laboratory column studies. Environ Sci Technol. 19:961-968. – reference: 46. Egli, C., T. Tschan, R. Scholtz, A.M. Cook, and T. Leisinger. 1988. Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii. Appl Environ Microbiol. 54:2819-2824. – reference: 69. Higashioka, Y., H. Kojima, and M. Fukui. 2012. Isolation and characterization of novel sulfate-reducing bacterium capable of anaerobic degradation of p-xylene. Microbes Environ. 27:273-277. – reference: 127. Muller, E.E.L., F. Bringel, and S. Vuilleumier. 2011. Dichloromethane-degrading bacteria in the genomic age. Res Microbiol. 162:869-876. – reference: 154. Robinson, G.K., G.M. Stephens, H. Dalton, and P.J. Geary. 1992. The production of catechols from benzene and toluene by Pseudomonas putida in glucose fed-batch culture. Biocatalysis. 6:81-100. – reference: 35. Christensen, T.H., P. Kjeldsen, H.-J. Albrechtsen, G. Heron, P.H. Nielsen, P.L. Bjerg, and P.E. Holm. 1994. Attenuation of landfill leachate pollutants in aquifers. Crit Rev Environ Sci Technol. 24:119-202. – reference: 134. Nelson, M.J.K., A.O. Montgomery, and P.H. Pritchard. 1988. Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Appl Environ Microbiol. 54:604-606. – reference: 48. Ellis, D.E., E.J. Lutz, J.M. Odom, R.J. Buchanan, C.L. Bartlett, M.D. Lee, M.R. Harkness, and K.A. Deweerd. 2000. Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol. 34:2254-2260. – reference: 8. Araki, N., K. Chino, D. Kasai, E. Masai, and M. Fukuda. 2014. Degradation of cis-1,2-dichloroethylene by Rhodococcus jostii RHA1. The 66th Annual Meeting of the Society of Biotechnology of Japan 3P-091(in Japanese). – reference: 137. Neumann, A., G. Wohlfarth, and G. Diekert. 1998. Tetrachloroethene dehalogenase from Dehalospirillum multivorans: cloning, sequencing of the encoding genes, and expression of the pceA gene in Escherichia coli. J Bacteriol. 180:4140-4145. – reference: 107. Magnuson, J.K., M.F. Romine, D.R. Burris, and M.T. Kingsley. 2000. Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes: Sequence of tceA and substrate range characterization. Appl Environ Microbiol. 66:5141-5147. – reference: 85. Kitayama, A., E. Suzuki, Y. Kawakami, and T. Nagamune. 1996. Gene organization and low regiospecificity in aromatic-ring hydroxylation of a benzene monooxygenase of Pseudomonas aeruginosa JI104. J Ferment Bioeng. 82:421-425. – reference: 49. Elsgaard, L. 2013. Reductive transformation and inhibitory effect of ethylene under methanogenic conditions in peat-soil. Soil Biol Biochem. 60:19-22. – reference: 144. Parsons, . 2004. Principles and practices of enhanced anaerobic bioremediation of chlorinated solvents. Air Force Center for Environmental Excellence, Brooks City-Base, Texas: Naval Facilities Engineering Service Center, Port Hueneme, California: Environmental Security Technology Certification Program, Arlington, Virginia. – reference: 52. Fishman, A., Y. Tao, and T.K. Wood. 2004. Toluene 3-monooxygenase of Ralstonia pickettii PKO1 is a para-hydroxylating enzyme. J Bacteriol. 186:3117-3123. – reference: 66. He, J., K.M. Ritalahti, K.L. Yang, S.S. Koenigsberg, and F.E. Löffler. 2003. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature. 424:62-65. – reference: 98. Leahy, J.G., A.M. Byrne, and R.H. Olsen. 1996. Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria. Appl Environ Microbiol. 62:825-833. – reference: 209. Yu, H., B.J. Kim, and B.E. Rittmann. 2001. A two-step model for the kinetics of BTX degradation and intermediate formation by Pseudomonas putida F1. Biodegradation. 12:465-475. – reference: 179. United States Environmental Protection Agency. 2012. Final first five-year review report. National Aeronautics and Space Administration Jet Propulsion Laboratory, United States Environmental Protection Agency, Washington, DC. – reference: 190. Vardar, G., and T.K. Wood. 2004. Protein engineering of toluene-oxylene monooxygenase from Pseudomonas stutzeri OX1 for synthesizing 4-methylresorcinol, methylhydroquinone, and pyrogallol. Appl Environ Microbiol. 70:3253-3262. – reference: 116. Maymó-Gatell, X., Y.T. Chien, J.M. Gossett, and S.H. Zinder. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science. 276:1568-1571. – reference: 207. Yoshikawa, M., M. Zhang, and K. Toyota. 2016. Enhancement and biological characteristics related to aerobic biodegradation of toluene with co-existence of benzene. Water Air Soil Pollut. 227:340. – reference: 3. Alexander, M. 1967. The breakdown of pesticides in soils, p.331-342. In N.C. Brady (ed.), Agriculture and the Quality of Our Environment. American Association for the Advancement of Science, Washington, D.C. – reference: 185. United States Environmental Protection Agency. 2015. Fourth five-year review report for the Colesville municipal landfill site. United States Environmental Protection Agency, Washington, DC. – reference: 55. Futamata, H., S. Kaiya, M. Sugawara, and A. Hiraishi. 2009. Phylogenetic and transcriptional analyses of a tetrachloroethenedechlorinating “Dehalococcoides” enrichment culture TUT2264 and its reductive-dehalogenase genes. Microbes Environ. 24:330-337. – reference: 174. Tsien, H.C., G.A. Brusseau, R.S. Hanson, and L.P. Wackett. 1989. Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl Environ Microbiol. 55:3155-3161. – reference: 193. Vidali, M. 2001. Bioremediation. An overview. Pure Appl Chem. 73:1163-1172. – reference: 165. Sun, A.K., and T.K. Wood. 1996. Trichloroethylene degradation and mineralization by pseudomonads and Methylosinus trichosporium OB3b. Appl Microbiol Biotechnol. 45:248-256. – reference: 59. Gibson, T.L., A.S. Abdul, and R.H. Olsen. 1988. Microbial degradation of aromatic hydrocarbons in hydrogeological materials: microcosm studies, p.53-69.Proceedings of the Second National Outdoor Action Conference on Aquifer RestorationGroundwater and Geophysical Methods. 1. National Water Well Association, Dublin, Ohio. – reference: 80. Kasahara, Y., H. Morimoto, M. Kuwano, and R. Kadoya. 2012. Genome-wide analytical approaches using semi-quantitative expression proteomics for aromatic hydrocarbon metabolism in Pseudomonas putida F1. J Microbiol Methods. 91:434-442. – reference: 161. Shields, M.S., S.O. Montgomery, S.M. Cuskey, P.J. Chapman, and P.H. Pritchard. 1991. Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene. Appl Environ Microbiol. 57:1935-1941. – reference: 36. Coates, J.D., V.K. Bhupathiraju, L.A. Achenbach, M.J. Mclnerney, and D.R. Lovley. 2001. Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dis-similatory Fe(III)-reducers. Int J Syst Evol Microbiol. 51:581-588. – reference: 138. Newman, L.M., and L.P. Wackett. 1995. Purification and characterization of toluene 2-monooxygenase from Burkholderia cepacia G4. Biochemistry. 34:14066-14076. – reference: 45. Duhamel, M., S.D. Wehr, L. Yu, H. Rizvi, D. Seepersad, S. Dworatzek, E.E. Cox, and E.A. Edwards. 2002. Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Res. 36:4193-4202. – reference: 163. Shinoda, Y., Y. Sakai, H. Uenishi, Y. Uchihashi, A. Hiraishi, H. Yukawa, H. Yurimoto, and N. Kato. 2004. Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1. Appl Environ Microbiol. 70:1385-1392. – reference: 126. Moreno, R., P. Fonseca, and F. Rojo. 2012. Two small RNAs, CrcY and CrcZ, act in concert to sequester the Crc global regulator in Pseudomonas putida, modulating catabolite repression. Mol Microbiol. 83:24-40. – reference: 78. Kang, J.W., and S.L. Doty. 2014. Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate. Can J Microbiol. 60:487-490. – reference: 166. Sung, Y., K.E. Fletcher, K.M. Ritalahti, R.P. Apkarian, N. Ramos-Hernandez, R.A. Sanford, N.M. Mesbah, and F.E. Löffler. 2006. Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ Microbiol. 72:2775-2782. – reference: 74. Inouye, S., A. Nakazawa, and T. Nakazawa. 1981. Molecular cloning of TOL genes xylB and xylE in Escherichia coli. J Bacteriol. 145:1137-1143. – reference: 34. Chow, W.L., D. Cheng, S. Wang, and J. He. 2010. Identification and transcriptional analysis of trans-DCE-producing reductive dehalogenases in Dehalococcoides species. ISME J. 4:1020-1030. – reference: 212. Zylstra, G.J., and D.T. Gibson. 1989. Toluene degradation by Pseudomonas putida F1. J Biol Chem. 264:14940-14946. – reference: 195. Wackett, L.P., and D.T. Gibson. 1988. Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1. Appl Environ Microbiol. 54:1703-1708. – reference: 5. Altenschmidt, U., and G. Fuchs. 1991. Anaerobic degradation of toluene in denitrifying Pseudomonas sp.: indication for toluene methylhydroxylation and benzoyl-CoA as central aromatic intermediate. Arch Microbiol. 156:152-158. – reference: 155. Ryoo, D., H. Shim, K. Canada, P. Barbieri, and T.K. Wood. 2000. Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Nat Biotechnol. 18:775-778. – reference: 21. Bordel, S., R. Muñoz, L.F. Díaz, and S. Villaverde. 2007. New insights on toluene biodegradation by Pseudomonas putida F1: influence of pollutant concentration and excreted metabolites. Appl Microbiol Biotechnol. 74:857-866. – reference: 7. Alvarez-Cohen, L., and P.L. McCarty. 1991. Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells. Appl Environ Microbiol. 57:1031-1037. – reference: 102. Löffler, F.E., J. Yan, K.M. Ritalahti, L. Adrian, E.A. Edwards, K.T. Konstantinidis, J.A. Müller, H. Fullerton, S.H. Zinder, and A.M. Spormann. 2013. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol. 63:625-635. – reference: 135. Neumann, A., H. Scholz-Muramatsu, and G. Diekert. 1994. Tetrachloroethene metabolism of Dehalospirillum multivorans. Arch Microbiol. 162:295-301. – reference: 61. Grostern, A., M. Duhamel, S. Dworatzek, and E.A. Edwards. 2010. Chloroform respiration to dichloromethane by a Dehalobacter population. Environ Microbiol. 12:1053-1060. – reference: 79. Kao, C.M., C.Y. Chen, S.C. Chen, H.Y. Chien, and Y.L. Chen. 2008. Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: Field and microbial evaluation. Chemosphere. 70:1492-1499. – reference: 141. Oh, Y.S., Z. Shareefdeen, B.C. Baltzis, and R. Bartha. 1994. Interactions between benzene, toluene, and p-xylene (BTX) during their biodegradation. Biotechnol Bioeng. 44:533-538. – reference: 24. Bucheli-Witschel, M., T. Hafner, I. Rüegg, and T. Egli. 2009. Benzene degradation by Ralstonia pickettii PKO1 in the presence of the alternative substrate succinate. Biodegradation. 20:419-431. – reference: 176. United States Environmental Protection Agency. 2006. Final five-year review report for Brookhaven National Laboratory Superfund Site, Town of Brookhaven. United States Environmental Protection Agency, Washington, DC. – reference: 112. Mars, A.E., G.T. Prins, P. Wietzes, W. de Koning, and D.B. Janssen. 1998. Effect of trichloroethylene on the competitive behavior of toluene-degrading bacteria. Appl Environ Microbiol. 64:208-215. – reference: 38. Coleman, N.V., T.E. Mattes, J.M. Gossett, and J.C. Spain. 2002. Biodegradation of cis-dichloroethene as the sole carbon source by a β-proteobacterium. Appl Environ Microbiol. 68:2726-2730. – reference: 181. United States Environmental Protection Agency. 2013. Superfund remedy report, 14th ed. United States Environmental Protection Agency, EPA 542-R-13-016, Washington, DC. – ident: 141 doi: 10.1002/bit.260440417 – ident: 161 doi: 10.1128/AEM.57.7.1935-1941.1991 – ident: 212 doi: 10.1016/S0021-9258(18)63793-7 – ident: 130 doi: 10.1016/j.chemosphere.2007.01.016 – ident: 51 doi: 10.1128/AEM.62.1.61-66.1996 – ident: 47 doi: 10.1007/s00253-006-0424-4 – ident: 97 – ident: 137 doi: 10.1128/JB.180.16.4140-4145.1998 – ident: 211 doi: 10.1128/AEM.54.6.1498-1503.1988 – ident: 164 doi: 10.1146/annurev.micro.58.030603.123600 – ident: 88 doi: 10.1264/jsme2.ME13113 – ident: 60 doi: 10.1186/1944-3277-10-15 – ident: 153 doi: 10.1128/aem.61.8.2936-2942.1995 – ident: 35 doi: 10.1080/10643389409388463 – ident: 52 doi: 10.1128/JB.186.10.3117-3123.2004 – ident: 127 doi: 10.1016/j.resmic.2011.01.008 – ident: 21 doi: 10.1007/s00253-006-0724-8 – ident: 82 doi: 10.1128/AEM.60.6.1914-1920.1994 – ident: 147 doi: 10.1111/j.1574-6968.1994.tb07126.x – ident: 66 doi: 10.1038/nature01717 – ident: 31 doi: 10.1128/AEM.64.8.3023-3024.1998 – ident: 150 doi: 10.1128/AEM.59.5.1444-1451.1993 – ident: 175 doi: 10.1186/s40793-015-0095-9 – ident: 193 doi: 10.1351/pac200173071163 – ident: 23 doi: 10.1128/AEM.40.5.950-958.1980 – ident: 69 doi: 10.1264/jsme2.ME11357 – ident: 10 doi: 10.1016/0006-291X(89)90042-9 – ident: 17 doi: 10.1111/j.1574-6968.1999.tb13771.x – ident: 4 – ident: 188 doi: 10.1016/S0168-1656(00)00364-3 – ident: 168 doi: 10.1128/JB.184.13.3419-3425.2002 – ident: 126 doi: 10.1111/j.1365-2958.2011.07912.x – ident: 140 doi: 10.1264/jsme2.ME13104 – ident: 73 doi: 10.1111/j.1574-6968.2011.02249.x – ident: 38 doi: 10.1128/AEM.68.6.2726-2730.2002 – ident: 186 doi: 10.1007/978-94-015-9062-4 – ident: 181 – ident: 170 doi: 10.1371/journal.pone.0052038 – ident: 68 doi: 10.1016/j.mimet.2005.04.018 – ident: 7 doi: 10.1128/AEM.57.4.1031-1037.1991 – ident: 33 doi: 10.1128/AEM.02809-12 – ident: 133 doi: 10.1128/AEM.53.5.949-954.1987 – ident: 139 doi: 10.1016/j.chemosphere.2006.09.084 – ident: 194 doi: 10.1111/j.1751-7915.2011.00260.x – ident: 58 doi: 10.1021/bi00809a023 – ident: 110 doi: 10.1021/es0255711 – ident: 134 doi: 10.1128/AEM.54.2.604-606.1988 – ident: 199 doi: 10.1007/s11157-010-9219-2 – ident: 99 doi: 10.1007/s11356-009-0238-x – ident: 77 doi: 10.1007/s11157-010-9215-6 – ident: 129 doi: 10.1128/AEM.70.8.4880-4888.2004 – ident: 119 doi: 10.1128/AEM.62.8.2716-2722.1996 – ident: 39 doi: 10.1128/JB.185.18.5536-5545.2003 – ident: 160 doi: 10.1128/AEM.55.6.1624-1629.1989 – ident: 171 doi: 10.1128/AEM.01873-12 – ident: 146 doi: 10.1111/j.1574-6941.2010.00935.x – ident: 196 doi: 10.1128/AEM.55.11.2960-2964.1989 – ident: 152 doi: 10.1023/A:1005366406453 – ident: 206 doi: 10.1023/B:BIOD.0000009947.09125.35 – ident: 63 doi: 10.1128/AEM.63.9.3607-3613.1997 – ident: 6 doi: 10.1128/AEM.57.10.2981-2985.1991 – ident: 176 – ident: 92 doi: 10.1021/bi00452a027 – ident: 189 doi: 10.1128/AEM.56.4.1169-1171.1990 – ident: 109 doi: 10.1016/j.jhazmat.2008.08.007 – ident: 20 doi: 10.1126/science.1258118 – volume: 13 start-page: 200 issn: 1471-2164 year: 2012 ident: 197 publication-title: BMC Genomics doi: 10.1186/1471-2164-13-200 – ident: 85 doi: 10.1016/S0922-338X(97)86976-0 – ident: 111 doi: 10.1021/es1023459 – ident: 29 doi: 10.1021/bi00322a029 – ident: 75 – ident: 201 doi: 10.1128/AEM.49.1.242-243.1985 – ident: 182 – ident: 14 doi: 10.1128/AEM.69.6.3350-3358.2003 – ident: 8 – ident: 209 doi: 10.1023/A:1015012913426 – ident: 116 doi: 10.1126/science.276.5318.1568 – ident: 144 – ident: 120 doi: 10.7554/eLife.04279 – ident: 104 – ident: 18 doi: 10.1128/AEM.62.10.3704-3711.1996 – ident: 9 doi: 10.1128/AEM.01067-06 – ident: 165 doi: 10.1007/s002530050679 – ident: 16 doi: 10.1128/jb.178.19.5755-5761.1996 – ident: 34 doi: 10.1038/ismej.2010.27 – ident: 191 doi: 10.1002/1097-0290(2000)71:4<274::AID-BIT1017>3.0.CO;2-Z – ident: 76 – ident: 96 doi: 10.1021/es00140a013 – ident: 166 – ident: 42 – ident: 3 – ident: 81 doi: 10.1128/JB.182.19.5433-5439.2000 – ident: 80 doi: 10.1016/j.mimet.2012.09.017 – ident: 173 doi: 10.1128/AEM.70.7.3814-3820.2004 – ident: 30 doi: 10.1111/j.1745-6592.1997.tb01282.x – ident: 143 doi: 10.1128/jb.176.12.3749-3756.1994 – ident: 11 doi: 10.1002/(SICI)1097-0290(19991005)65:1<100::AID-BIT12>3.0.CO;2-1 – ident: 121 – ident: 203 doi: 10.1128/AEM.64.6.2006-2012.1998 – ident: 102 – ident: 177 – ident: 27 doi: 10.1128/AEM.71.8.4736-4743.2005 – ident: 103 doi: 10.1128/AEM.64.3.1106-1114.1998 – ident: 198 doi: 10.1021/acs.est.5b01979 – ident: 131 doi: 10.1007/s10532-014-9715-0 – ident: 135 doi: 10.1007/BF00301854 – ident: 155 doi: 10.1038/77344 – ident: 46 doi: 10.1128/AEM.54.11.2819-2824.1988 – ident: 12 doi: 10.1128/AEM.53.9.2129-2132.1987 – ident: 28 doi: 10.1007/s00253-012-4494-1 – ident: 94 doi: 10.1128/AEM.62.11.4108-4113.1996 – ident: 123 doi: 10.1128/JB.186.5.1337-1344.2004 – ident: 163 doi: 10.1128/AEM.70.3.1385-1392.2004 – ident: 210 doi: 10.1061/9780784480168.030 – ident: 183 – ident: 15 doi: 10.1021/es101356t – ident: 50 doi: 10.1128/AEM.58.9.3038-3046.1992 – ident: 48 doi: 10.1021/es990638e – ident: 22 doi: 10.1080/10889860290777431 – ident: 61 doi: 10.1111/j.1462-2920.2009.02150.x – ident: 1 – ident: 117 doi: 10.1021/es001285i – ident: 125 doi: 10.1074/jbc.M110.126615 – ident: 59 – ident: 71 – ident: 172 – ident: 138 doi: 10.1021/bi00043a012 – ident: 54 – ident: 113 – ident: 128 doi: 10.1111/j.1462-2920.2011.02524.x – ident: 13 doi: 10.1016/S0043-1354(99)00121-9 – ident: 122 doi: 10.1264/jsme2.ME14127 – ident: 107 doi: 10.1128/AEM.66.12.5141-5147.2000 – ident: 190 doi: 10.1128/AEM.70.6.3253-3262.2004 – ident: 74 doi: 10.1128/JB.145.3.1137-1143.1981 – ident: 79 doi: 10.1016/j.chemosphere.2007.08.029 – ident: 200 doi: 10.1128/jb.173.9.3010-3016.1991 – ident: 115 doi: 10.1111/j.1574-6976.2010.00210.x – ident: 83 doi: 10.1128/AEM.01695-08 – ident: 112 doi: 10.1128/AEM.64.1.208-215.1998 – ident: 26 doi: 10.1016/0378-1119(94)00844-I – ident: 55 doi: 10.1264/jsme2.ME09133 – ident: 90 doi: 10.1128/JB.162.2.676-681.1985 – ident: 105 doi: 10.1128/AEM.64.2.646-650.1998 – ident: 178 – ident: 41 doi: 10.1016/j.mib.2008.02.007 – ident: 108 doi: 10.1128/AEM.69.8.4628-4638.2003 – ident: 32 – ident: 93 doi: 10.1021/bi00437a057 – ident: 100 doi: 10.1046/j.1365-2958.1998.00826.x – ident: 154 doi: 10.3109/10242429209014885 – ident: 24 doi: 10.1007/s10532-008-9233-z – ident: 184 – ident: 205 doi: 10.1016/0385-6380(88)90109-4 – ident: 204 doi: 10.1021/es050084h – ident: 192 doi: 10.1021/es002064f – ident: 86 doi: 10.1111/j.1462-2920.2007.01427.x – ident: 84 doi: 10.1016/0922-338X(96)88811-8 – ident: 207 doi: 10.1007/s11270-016-3050-5 – ident: 167 doi: 10.1128/AEM.72.3.1980-1987.2006 – ident: 2 doi: 10.1021/es990809f – ident: 53 doi: 10.1159/000121324 – ident: 169 doi: 10.1128/jb.173.5.1690-1695.1991 – ident: 57 doi: 10.1021/bi00847a031 – ident: 62 doi: 10.1007/s00253-005-1944-z – ident: 91 doi: 10.1128/AEM.70.10.6347-6351.2004 – ident: 156 doi: 10.1099/00221287-143-8-2557 – ident: 5 – ident: 149 doi: 10.1007/s12010-012-0005-1 – ident: 124 doi: 10.1128/JB.01604-07 – ident: 49 doi: 10.1016/j.soilbio.2013.01.010 – ident: 132 doi: 10.1128/AEM.52.2.383-384.1986 – ident: 174 doi: 10.1128/AEM.55.12.3155-3161.1989 – ident: 195 doi: 10.1128/AEM.54.7.1703-1708.1988 – ident: 145 doi: 10.1128/JB.01122-07 – ident: 114 doi: 10.1007/s10532-012-9539-8 – ident: 43 doi: 10.1007/BF00124489 – ident: 159 doi: 10.1111/j.1432-1033.1992.tb17260.x – ident: 45 doi: 10.1016/S0043-1354(02)00151-3 – ident: 148 doi: 10.1111/1574-6968.12160 – ident: 25 doi: 10.1074/jbc.275.14.10085 – ident: 70 doi: 10.1128/AEM.59.9.2991-2997.1993 – ident: 37 doi: 10.1016/S0923-2508(02)01378-5 – ident: 95 – ident: 208 doi: 10.1007/s11270-016-3216-1 – ident: 179 – ident: 187 doi: 10.1128/AEM.62.9.3304-3312.1996 – ident: 40 doi: 10.1128/AEM.69.10.6041-6046.2003 – ident: 185 – ident: 36 doi: 10.1099/00207713-51-2-581 – ident: 151 doi: 10.1007/BF00381782 – ident: 158 doi: 10.1126/science.1102226 – ident: 19 doi: 10.1128/AEM.64.10.3626-3632.1998 – ident: 78 doi: 10.1139/cjm-2014-0095 – ident: 89 doi: 10.1128/AEM.59.4.960-967.1993 – ident: 65 doi: 10.1128/AEM.58.4.1220-1226.1992 – ident: 67 – ident: 98 doi: 10.1128/AEM.62.3.825-833.1996 – ident: 142 doi: 10.1128/AEM.55.11.2819-2826.1989 – ident: 64 doi: 10.1007/BF01166208 – ident: 157 – ident: 72 doi: 10.1007/s002530000566 – ident: 118 – ident: 87 doi: 10.1016/j.jhazmat.2012.03.076 – ident: 106 doi: 10.1128/AEM.64.4.1270-1275.1998 – ident: 202 doi: 10.1128/JB.124.1.7-13.1975 – ident: 56 doi: 10.1128/AEM.65.12.5212-5221.1999 – ident: 44 doi: 10.1007/BF00276528 – ident: 136 doi: 10.1074/jbc.271.28.16515 – ident: 162 doi: 10.1002/1097-0290(20001220)70:6<693::AID-BIT12>3.0.CO;2-W – ident: 101 doi: 10.1128/AEM.00673-16 – ident: 180 – reference: 24428759 - Environ Microbiol. 2014 Nov;16(11):3387-97 – reference: 11718337 - Environ Sci Technol. 2001 Nov 1;35(21):4242-51 – reference: 17136537 - Appl Microbiol Biotechnol. 2007 Mar;74(4):857-66 – reference: 1905516 - Appl Environ Microbiol. 1991 Apr;57(4):1031-7 – reference: 2559772 - Biochemistry. 1989 Dec 26;28(26):10061-5 – reference: 7802545 - Arch Microbiol. 1994;162(4):295-301 – reference: 21450012 - Microb Biotechnol. 2011 Nov;4(6):710-24 – reference: 8702263 - Appl Environ Microbiol. 1996 Aug;62(8):2716-22 – reference: 12523427 - Environ Sci Technol. 2002 Dec 1;36(23):5106-16 – reference: 18359269 - Curr Opin Microbiol. 2008 Apr;11(2):87-93 – reference: 10483734 - FEMS Microbiol Lett. 1999 Sep 1;178(1):147-53 – reference: 12420924 - Water Res. 2002 Oct;36(17):4193-202 – reference: 9603807 - Appl Environ Microbiol. 1998 Jun;64(6):2006-12 – reference: 18835999 - Appl Environ Microbiol. 2008 Dec;74(23):7313-20 – reference: 8206853 - J Bacteriol. 1994 Jun;176(12 ):3749-56 – reference: 8663199 - J Biol Chem. 1996 Jul 12;271(28):16515-9 – reference: 3415234 - Appl Environ Microbiol. 1988 Jul;54(7):1703-8 – reference: 16349282 - Appl Environ Microbiol. 1994 Jun;60(6):1914-20 – reference: 23600617 - FEMS Microbiol Lett. 2013 Jun;343(2):101-4 – reference: 26551549 - Environ Sci Technol. 2015 Dec 15;49(24):14319-25 – reference: 10583967 - Appl Environ Microbiol. 1999 Dec;65(12):5212-21 – reference: 2930535 - Biochem Biophys Res Commun. 1989 Mar 15;159(2):640-3 – reference: 12840758 - Nature. 2003 Jul 3;424(6944):62-5 – reference: 11351722 - Environ Sci Technol. 2001 Feb 1;35(3):516-21 – reference: 2244785 - Arch Microbiol. 1990;154(4):336-41 – reference: 16348920 - Appl Environ Microbiol. 1993 Apr;59(4):960-7 – reference: 20357835 - ISME J. 2010 Aug;4(8):1020-30 – reference: 15184119 - Appl Environ Microbiol. 2004 Jun;70(6):3253-62 – reference: 28042183 - Water Air Soil Pollut. 2017;228(1):25 – reference: 15754184 - Appl Microbiol Biotechnol. 2005 Oct;68(6):794-801 – reference: 9696761 - J Bacteriol. 1998 Aug;180(16):4140-5 – reference: 15006757 - Appl Environ Microbiol. 2004 Mar;70(3):1385-92 – reference: 10986246 - J Bacteriol. 2000 Oct;182(19):5433-9 – reference: 8837426 - Appl Environ Microbiol. 1996 Oct;62(10 ):3704-11 – reference: 19039669 - Biodegradation. 2009 Jun;20(3):419-31 – reference: 15487929 - Annu Rev Microbiol. 2004;58:43-73 – reference: 17316748 - Chemosphere. 2007 Jun;68(2):244-52 – reference: 22446308 - Microbes Environ. 2012;27(3):273-7 – reference: 7487026 - Appl Environ Microbiol. 1995 Aug;61(8):2936-42 – reference: 8572713 - Appl Environ Microbiol. 1996 Jan;62(1):61-6 – reference: 22616984 - BMC Genomics. 2012 May 22;13:200 – reference: 16642331 - Appl Microbiol Biotechnol. 2006 Oct;72(6):1270-5 – reference: 11165358 - J Biotechnol. 2001 Feb 13;85(2):81-102 – reference: 3606099 - Appl Environ Microbiol. 1987 May;53(5):949-54 – reference: 26203328 - Stand Genomic Sci. 2015 Feb 24;10:15 – reference: 4039602 - Biochemistry. 1985 Jan 1;24(1):204-10 – reference: 16517646 - Appl Environ Microbiol. 2006 Mar;72(3):1980-7 – reference: 15294827 - Appl Environ Microbiol. 2004 Aug;70(8):4880-8 – reference: 9274009 - Microbiology. 1997 Aug;143 ( Pt 8):2557-67 – reference: 23093177 - Appl Microbiol Biotechnol. 2012 Dec;96(6):1395-409 – reference: 7009570 - J Bacteriol. 1981 Mar;145(3):1137-43 – reference: 2624462 - Appl Environ Microbiol. 1989 Nov;55(11):2819-26 – reference: 25278505 - Science. 2014 Oct 24;346(6208):455-8 – reference: 17950413 - Chemosphere. 2008 Feb;70(8):1492-9 – reference: 2515801 - Appl Environ Microbiol. 1989 Dec;55(12):3155-61 – reference: 16345659 - Appl Environ Microbiol. 1980 Nov;40(5):950-8 – reference: 3674872 - Appl Environ Microbiol. 1987 Sep;53(9):2129-32 – reference: 16349516 - Appl Environ Microbiol. 1998 Mar;64(3):1106-14 – reference: 16349481 - Appl Environ Microbiol. 1998 Jan;64(1):208-15 – reference: 15637277 - Science. 2005 Jan 7;307(5706):105-8 – reference: 3355147 - Appl Environ Microbiol. 1988 Feb;54(2):604-6 – reference: 8900001 - Appl Environ Microbiol. 1996 Nov;62(11):4108-13 – reference: 19756804 - Environ Sci Pollut Res Int. 2010 Jan;17(1):64-77 – reference: 20529863 - J Biol Chem. 2010 Aug 6;285(32):24412-9 – reference: 23022446 - J Microbiol Methods. 2012 Dec;91(3):434-42 – reference: 17965160 - J Bacteriol. 2008 Jan;190(1):37-47 – reference: 18804909 - J Hazard Mater. 2009 May 15;164(1):337-44 – reference: 12902251 - Appl Environ Microbiol. 2003 Aug;69(8):4628-38 – reference: 24992516 - Can J Microbiol. 2014 Jul;60(7):487-90 – reference: 25877696 - Microbes Environ. 2015;30(2):164-71 – reference: 22179245 - Appl Environ Microbiol. 2012 Feb;78(4):1288-91 – reference: 18211265 - Environ Microbiol. 2008 Jan;10(1):31-46 – reference: 20695893 - FEMS Microbiol Ecol. 2010 Nov;74(2):257-75 – reference: 10440676 - Biotechnol Bioeng. 1999 Oct 5;65(1):100-7 – reference: 8824622 - J Bacteriol. 1996 Oct;178(19):5755-61 – reference: 1781729 - Arch Microbiol. 1991;156(2):152-8 – reference: 7574658 - Appl Environ Microbiol. 1995 Sep;61(9):3479-81 – reference: 7686000 - Appl Environ Microbiol. 1993 May;59(5):1444-51 – reference: 23284863 - PLoS One. 2012;7(12):e52038 – reference: 12051652 - Biodegradation. 2001;12(6):465-75 – reference: 2019563 - J Bacteriol. 1991 May;173(9):3010-6 – reference: 8920197 - Appl Microbiol Biotechnol. 1996 Mar;45(1-2):248-56 – reference: 2843094 - Appl Environ Microbiol. 1988 Jun;54(6):1498-503 – reference: 22053874 - Mol Microbiol. 2012 Jan;83(1):24-40 – reference: 7926693 - FEMS Microbiol Lett. 1994 Sep 1;121(3):357-63 – reference: 26568785 - Stand Genomic Sci. 2015 Nov 14;10:102 – reference: 1746958 - Appl Environ Microbiol. 1991 Oct;57(10):2981-5 – reference: 17123579 - Chemosphere. 2007 Feb;67(2):300-11 – reference: 21362021 - FEMS Microbiol Lett. 2011 May;318(2):137-42 – reference: 1176436 - J Bacteriol. 1975 Oct;124(1):7-13 – reference: 14973036 - J Bacteriol. 2004 Mar;186(5):1337-44 – reference: 20146755 - FEMS Microbiol Rev. 2010 Jul;34(4):445-75 – reference: 1444418 - Appl Environ Microbiol. 1992 Sep;58(9):3038-46 – reference: 16349505 - Appl Environ Microbiol. 1998 Feb;64(2):646-50 – reference: 21854516 - Environ Microbiol. 2011 Sep;13(9):2518-35 – reference: 18156252 - J Bacteriol. 2008 Mar;190(5):1539-45 – reference: 3988708 - J Bacteriol. 1985 May;162(2):676-81 – reference: 15240250 - Appl Environ Microbiol. 2004 Jul;70(7):3814-20 – reference: 16201659 - Environ Sci Technol. 2005 Sep 15;39(18):7279-86 – reference: 12039726 - Appl Environ Microbiol. 2002 Jun;68(6):2726-30 – reference: 2624467 - Appl Environ Microbiol. 1989 Nov;55(11):2960-4 – reference: 8215370 - Appl Environ Microbiol. 1993 Sep;59(9):2991-7 – reference: 2339874 - Appl Environ Microbiol. 1990 Apr;56(4):1169-71 – reference: 11064339 - Biotechnol Bioeng. 2000 Dec 20;70(6):693-8 – reference: 11414323 - Appl Microbiol Biotechnol. 2001 May;55(5):571-7 – reference: 16347956 - Appl Environ Microbiol. 1989 Jun;55(6):1624-9 – reference: 12949106 - J Bacteriol. 2003 Sep;185(18):5536-45 – reference: 16997980 - Appl Environ Microbiol. 2006 Nov;72(11):7418-21 – reference: 16597982 - Appl Environ Microbiol. 2006 Apr;72(4):2775-82 – reference: 11097881 - Appl Environ Microbiol. 2000 Dec;66(12):5141-7 – reference: 15949858 - J Microbiol Methods. 2006 Feb;64(2):250-65 – reference: 22544797 - Int J Syst Evol Microbiol. 2013 Feb;63(Pt 2):625-35 – reference: 14532060 - Appl Environ Microbiol. 2003 Oct;69(10):6041-6 – reference: 22503214 - J Hazard Mater. 2012 Jun 15;219-220:169-75 – reference: 3145712 - Appl Environ Microbiol. 1988 Nov;54(11):2819-24 – reference: 24441515 - Microbes Environ. 2014;29(1):23-30 – reference: 27016563 - Appl Environ Microbiol. 2016 May 16;82(11):3269-79 – reference: 1892384 - Appl Environ Microbiol. 1991 Jul;57(7):1935-41 – reference: 23204411 - Appl Environ Microbiol. 2013 Feb;79(3):974-81 – reference: 1599242 - Appl Environ Microbiol. 1992 Apr;58(4):1220-6 – reference: 2670929 - J Biol Chem. 1989 Sep 5;264(25):14940-6 – reference: 3919642 - Appl Environ Microbiol. 1985 Jan;49(1):242-3 – reference: 11698363 - J Bacteriol. 2001 Dec;183(23):6763-70 – reference: 10671186 - Appl Environ Microbiol. 1998 Apr;64(4):1270-5 – reference: 16535402 - Appl Environ Microbiol. 1996 Sep;62(9):3304-12 – reference: 8975612 - Appl Environ Microbiol. 1996 Mar;62(3):825-33 – reference: 11291037 - Biotechnol Bioeng. 2000-2001;71(4):274-85 – reference: 4298226 - Biochemistry. 1968 Jul;7(7):2653-62 – reference: 7867951 - Gene. 1995 Feb 27;154(1):65-70 – reference: 9687467 - Appl Environ Microbiol. 1998 Aug;64(8):3023-4 – reference: 1999388 - J Bacteriol. 1991 Mar;173(5):1690-5 – reference: 16347139 - Appl Environ Microbiol. 1986 Aug;52(2):383-4 – reference: 10888848 - Nat Biotechnol. 2000 Jul;18(7):775-8 – reference: 12788736 - Appl Environ Microbiol. 2003 Jun;69(6):3350-8 – reference: 19656942 - Int J Syst Evol Microbiol. 2010 Mar;60(Pt 3):686-95 – reference: 16535693 - Appl Environ Microbiol. 1997 Sep;63(9):3607-13 – reference: 16085870 - Appl Environ Microbiol. 2005 Aug;71(8):4736-43 – reference: 25015887 - Appl Environ Microbiol. 2014 Sep;80(18):5801-6 – reference: 14971854 - Biodegradation. 2004 Feb;15(1):19-28 – reference: 11321104 - Int J Syst Evol Microbiol. 2001 Mar;51(Pt 2):581-8 – reference: 10744688 - J Biol Chem. 2000 Apr 7;275(14):10085-92 – reference: 12057934 - J Bacteriol. 2002 Jul;184(13):3419-25 – reference: 21214238 - Environ Sci Technol. 2011 Feb 15;45(4):1555-62 – reference: 7710331 - Arch Microbiol. 1995 Feb;163(2):96-103 – reference: 18618788 - Biotechnol Bioeng. 1994 Aug 5;44(4):533-8 – reference: 7578004 - Biochemistry. 1995 Oct 31;34(43):14066-76 – reference: 19633106 - Appl Environ Microbiol. 2009 Sep;75(18):5910-8 – reference: 15126473 - J Bacteriol. 2004 May;186(10):3117-23 – reference: 25331771 - Biodegradation. 2015 Feb;26(1):51-63 – reference: 20681521 - Environ Sci Technol. 2010 Sep 1;44(17):6829-34 – reference: 23479748 - Philos Trans R Soc Lond B Biol Sci. 2013 Mar 11;368(1616):20120318 – reference: 9171062 - Science. 1997 Jun 6;276(5318):1568-71 – reference: 18685265 - J Mol Microbiol Biotechnol. 2008;15(2-3):93-120 – reference: 23160122 - Appl Environ Microbiol. 2013 Jan;79(2):663-71 – reference: 21288483 - Res Microbiol. 2011 Nov;162(9):869-76 – reference: 1327782 - Eur J Biochem. 1992 Oct 1;209(1):51-61 – reference: 15959725 - J Ind Microbiol Biotechnol. 2005 Dec;32(11-12):534-41 – reference: 22311591 - Biodegradation. 2012 Sep;23(5):635-44 – reference: 9758777 - Appl Environ Microbiol. 1998 Oct;64(10):3626-32 – reference: 9632263 - Mol Microbiol. 1998 May;28(3):615-28 – reference: 24909708 - Microbes Environ. 2014;29(2):191-9 – reference: 23306883 - Appl Biochem Biotechnol. 2013 Feb;169(4):1197-218 – reference: 16104866 - Environ Microbiol. 2005 Sep;7(9):1442-50 – reference: 4314232 - Biochemistry. 1970 Mar 31;9(7):1626-30 – reference: 15466590 - Appl Environ Microbiol. 2004 Oct;70(10):6347-51 – reference: 21566393 - Microbes Environ. 2009;24(4):330-7 – reference: 20089043 - Environ Microbiol. 2010 Apr;12(4):1053-60 – reference: 9531632 - Arch Microbiol. 1998 Apr;169(4):313-21 – reference: 12558180 - Res Microbiol. 2002 Dec;153(10):621-8 – reference: 25418043 - Elife. 2014 Nov 24;3:null |
SSID | ssj0033572 |
Score | 2.4016771 |
SecondaryResourceType | review_article |
Snippet | Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 188 |
SubjectTerms | Aerobic microorganisms Anaerobic conditions Anaerobic microorganisms Anoxic conditions Benzene Biodegradability Biodegradation Biodegradation, Environmental Biological competition Bioremediation BTEX By-products Carbon tetrachloride Catabolite repression Chlorides chlorinated ethene chlorinated methane Chlorination Chloroform Competition Concrete Degradation Developed countries Dichloromethane Dumping Enzymes Ethene Ethylbenzene Industrial plants Information systems Interactions Japan Metabolism Microorganisms Minireview multiple VOCs Ocean dumping Organic compounds Phylogeny Pollutants Research facilities Soil Microbiology Tetrachloroethylene Toluene Toxicity Trichloroethylene Vinyl chloride VOCs Volatile organic compounds Volatile Organic Compounds - chemistry Xylene |
Title | Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions |
URI | https://www.jstage.jst.go.jp/article/jsme2/32/3/32_ME16188/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/28904262 https://www.proquest.com/docview/1947347839 https://pubmed.ncbi.nlm.nih.gov/PMC5606688 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Microbes and Environments, 2017, Vol.32(3), pp.188-200 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RaKVeqtIXKRT5UPXU0PUrD6mogmoRQlrUA1txixLboaAlaXe3EvvvO-N4Q7eFC1JkRcrYh8zY843t-QbgPTq9TFglY-cwVlW20nFeaheLukJ_brQ0jnKHR6fJ8VidnOvzW0qh8ANnd4Z2VE9qPJ3s3fxafMEJv--5ERL16Wp27cTeaEjc79kj2ECnlFAcNlL9gYKU2tdx4lKJOJGcB7rN_7oTOXCWe572FU_1-ArB2oW7C4f-e53yL_909ByeBWDJDjpL2IQ117yAJ0NPSr14Ce3hZWuJGKKrocTamn1v6R7cxLEuH9MwWhuoytKMlY1lZ3SEwDp24xnDLrcj-Au1C0b5Z1PsFQ9vaKVoLvCdTsDJkl_B-Gh49vU4DsUWYqMVn8eVNSJ1uRCDOilFXslSmqx2Cbei5NogcDRSldnAIMDgRtRWGW0HtctM6XKNoPE1rDdt47aApULb3KRSVJRpn6KtcmcSbBNdcVnyCD4uf2xhAhM5FcSYFBSRoEoKr5IiqCSCD734z46C4z7Bz52WerEw-4KYxIeaIN5_pfw2XCQi2FnqtljaYcFzlUqVIoyM4E2n5n70paFEkK4YQC9A1N2rX5rLH57CW1PcmGVvH9xzG54KAhh-M2gH1ufT3-4dwqN5tesNH9vTb6Ndv3v1B-9RFO8 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodegradation+of+Volatile+Organic+Compounds+and+Their+Effects+on+Biodegradability+under+Co-Existing+Conditions&rft.jtitle=Microbes+and+environments&rft.au=Yoshikawa%2C+Miho&rft.au=Zhang%2C+Ming&rft.au=Toyota%2C+Koki&rft.date=2017&rft.pub=the+Japanese+Society+of+Microbial+Ecology+%28JSME%29%2Fthe+Japanese+Society+of+Soil+Microbiology+%28JSSM%29%2Fthe+Taiwan+Society+of+Microbial+Ecology+%28TSME%29%2Fthe+Japanese+Society+of+Plant+Microbe+Interactions+%28JSPMI%29&rft.issn=1342-6311&rft.eissn=1347-4405&rft.volume=32&rft.issue=3&rft.spage=188&rft.epage=200&rft_id=info:doi/10.1264%2Fjsme2.ME16188&rft_id=info%3Apmid%2F28904262&rft.externalDocID=PMC5606688 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1342-6311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1342-6311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1342-6311&client=summon |