Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions

Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degradi...

Full description

Saved in:
Bibliographic Details
Published inMicrobes and Environments Vol. 32; no. 3; pp. 188 - 200
Main Authors Yoshikawa, Miho, Toyota, Koki, Zhang, Ming
Format Journal Article
LanguageEnglish
Published Japan Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles 2017
Japan Science and Technology Agency
the Japanese Society of Microbial Ecology (JSME)/the Japanese Society of Soil Microbiology (JSSM)/the Taiwan Society of Microbial Ecology (TSME)/the Japanese Society of Plant Microbe Interactions (JSPMI)
Subjects
Online AccessGet full text
ISSN1342-6311
1347-4405
DOI10.1264/jsme2.ME16188

Cover

More Information
Summary:Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degrading enzymes is available. However, the biodegradation of multiple VOCs remains a challenging issue. Practical sites, such as chemical factories, research facilities, and illegal dumping sites, are often contaminated with multiple VOCs. In order to investigate the potential of biodegrading multiple VOCs, we initially reviewed the biodegradation of individual VOCs. VOCs include chlorinated ethenes (tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride), BTEX (benzene, toluene, ethylbenzene, and xylene), and chlorinated methanes (carbon tetrachloride, chloroform, and dichloromethane). We also summarized essential information on the biodegradation of each kind of VOC under aerobic and anaerobic conditions, together with the microorganisms that are involved in VOC-degrading pathways. Interactions among multiple VOCs were then discussed based on concrete examples. Under conditions in which multiple VOCs co-exist, the biodegradation of a VOC may be constrained, enhanced, and/or unaffected by other compounds. Co-metabolism may enhance the degradation of other VOCs. In contrast, constraints are imposed by the toxicity of co-existing VOCs and their by-products, catabolite repression, or competition between VOC-degrading enzymes. This review provides fundamental, but systematic information for designing strategies for the bioremediation of multiple VOCs, as well as information on the role of key microorganisms that degrade VOCs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1342-6311
1347-4405
DOI:10.1264/jsme2.ME16188