Persistent cortical plasticity by upregulation of chondroitin 6-sulfation
The authors report that a developmental increase in the 4-sulfation/6-sulfation ratio of chondroitin sulfate proteoglycans modulates the maturity of parvalbumin-expressing interneurons and leads to the termination of the critical period for ocular dominance plasticity in the mouse visual cortex. Cor...
Saved in:
Published in | Nature neuroscience Vol. 15; no. 3; pp. 414 - 422 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.03.2012
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The authors report that a developmental increase in the 4-sulfation/6-sulfation ratio of chondroitin sulfate proteoglycans modulates the maturity of parvalbumin-expressing interneurons and leads to the termination of the critical period for ocular dominance plasticity in the mouse visual cortex.
Cortical plasticity is most evident during a critical period in early life, but the mechanisms that restrict plasticity after the critical period are poorly understood. We found that a developmental increase in the 4-sulfation/6-sulfation (4S/6S) ratio of chondroitin sulfate proteoglycans (CSPGs), which are components of the brain extracellular matrix, leads to the termination of the critical period for ocular dominance plasticity in the mouse visual cortex. Condensation of CSPGs into perineuronal nets that enwrapped synaptic contacts on parvalbumin-expressing interneurons was prevented by cell-autonomous overexpression of chondroitin 6-sulfation, which maintains a low 4S/6S ratio. Furthermore, the increase in the 4S/6S ratio was required for the accumulation of Otx2, a homeoprotein that activates the development of parvalbumin-expressing interneurons, and for functional maturation of the electrophysiological properties of these cells. Our results indicate that the critical period for cortical plasticity is regulated by the 4S/6S ratio of CSPGs, which determines the maturation of parvalbumin-expressing interneurons. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 1097-6256 1546-1726 |
DOI: | 10.1038/nn.3023 |