Utilizing cost-effective pyrocarbon for highly efficient gold retrieval from e-waste leachate

Addressing burdens of electronic waste (E-waste) leachate while achieving sustainable and selective recovery of noble metals, such as gold, is highly demanded due to its limited supply and escalating prices. Here we demonstrate an environmentally-benign and practical approach for gold recovery from...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 6137 - 13
Main Authors Fu, Kaixing, Liu, Xia, Zhang, Xiaolin, Zhou, Shiqing, Zhu, Nanwen, Pei, Yong, Luo, Jinming
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.07.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Addressing burdens of electronic waste (E-waste) leachate while achieving sustainable and selective recovery of noble metals, such as gold, is highly demanded due to its limited supply and escalating prices. Here we demonstrate an environmentally-benign and practical approach for gold recovery from E-waste leachate using alginate-derived pyrocarbon sorbent. The sorbent demonstrates potent gold recovery performance compared to most previously reported advanced sorbents, showcasing high recovery capacity of 2829.7 mg g −1 , high efficiency (>99.5%), remarkable selectivity ( K d  ~ 3.1 × 10 8 mL g −1 ), and robust anti-interference capabilities within environmentally relevant contexts. The aromatic structures of pyrocarbon serve as crucial electrons sources, enabling a hydroxylation process that simultaneously generates electrons and phenolic hydroxyls for the reduction of gold ions. Our investigations further uncover a “stepwise” nucleation mechanism, in which gold ions are reduced as intermediate gold-chlorine clusters, facilitating rapid reduction process by lowering energy barriers from 1.08 to −21.84 eV. Technoeconomic analysis demonstrates its economic viability with an input-output ratio as high as 1370%. Our protocol obviates the necessity for organic reagents whilst obtaining 23.96 karats gold product from real-world central processing units (CPUs) leachates. This work introduces a green sorption technique for gold recovery, emphasizing its role in promoting a circular economy and environmental sustainability. The demand for gold recovery from E-Waste is significant due to its high value. Here, authors present a practical method for extracting gold from an actual E-waste leachate using alginate-derived pyrocarbon. This approach yields a 23.96 karat gold product and demonstrates strong economic viability.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-50595-4