5-Aminolevulinic acid increases boronophenylalanine uptake into glioma stem cells and may sensitize malignant glioma to boron neutron capture therapy

Boron neutron capture therapy (BNCT) is a high-LET particle radiotherapy clinically tested for treating malignant gliomas. Boronophenylalanine (BPA), a boron-containing phenylalanine derivative, is selectively transported into tumor cells by amino acid transporters, making it an ideal agent for BNCT...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; p. 10173
Main Authors Fukumura, Masao, Nonoguchi, Naosuke, Kawabata, Shinji, Hiramatsu, Ryo, Futamura, Gen, Takeuchi, Koji, Kanemitsu, Takuya, Takata, Takushi, Tanaka, Hiroki, Suzuki, Minoru, Sampetrean, Oltea, Ikeda, Naokado, Kuroiwa, Toshihiko, Saya, Hideyuki, Nakano, Ichiro, Wanibuchi, Masahiko
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.06.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Boron neutron capture therapy (BNCT) is a high-LET particle radiotherapy clinically tested for treating malignant gliomas. Boronophenylalanine (BPA), a boron-containing phenylalanine derivative, is selectively transported into tumor cells by amino acid transporters, making it an ideal agent for BNCT. In this study, we investigated whether the amino acid 5-aminolevulinic acid (ALA) could sensitize glioma stem cells (GSCs) to BNCT by enhancing the uptake of BPA. Using human and mouse GSC lines, pre-incubation with ALA increased the intracellular accumulation of BPA dose-dependent. We also conducted in vivo experiments by intracerebrally implanting HGG13 cells in mice and administering ALA orally 24 h before BPA administration (ALA + BPA-BNCT). The ALA preloading group increased the tumor boron concentration and improved the tumor/blood boron concentration ratio, resulting in improved survival compared to the BPA-BNCT group. Furthermore, we found that the expression of amino acid transporters was upregulated following ALA treatment both in vitro and in vivo, particularly for ATB 0,+ . This suggests that ALA may sensitize GSCs to BNCT by upregulating the expression of amino acid transporters, thereby enhancing the uptake of BPA and improving the effectiveness of BNCT. These findings have important implications for strategies to improve the sensitivity of malignant gliomas to BPA-BNCT.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-37296-6