Facile Synthesis of Gd-Functionalized Gold Nanoclusters as Potential MRI/CT Contrast Agents

Multi-modal imaging plays a key role in the earlier detection of disease. In this work, a facile bioinspired method was developed to synthesize Gd-functionalized gold nanoclusters (Gd-Au NCs). The Gd-Au NCs exhibit a uniform size, with an average size of 5.6 nm in dynamic light scattering (DLS), whi...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 6; no. 4; p. 65
Main Authors Le, Wenjun, Cui, Shaobin, Chen, Xin, Zhu, Huanhuan, Chen, Bingdi, Cui, Zheng
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 09.04.2016
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multi-modal imaging plays a key role in the earlier detection of disease. In this work, a facile bioinspired method was developed to synthesize Gd-functionalized gold nanoclusters (Gd-Au NCs). The Gd-Au NCs exhibit a uniform size, with an average size of 5.6 nm in dynamic light scattering (DLS), which is a bit bigger than gold clusters (3.74 nm, DLS), while the fluorescent properties of Gd-Au NCs are almost the same as that of Au NCs. Moreover, the Gd-Au NCs exhibit a high longitudinal relaxivity value (r1) of 22.111 s per mM of Gd in phosphate-buffered saline (PBS), which is six times higher than that of commercial Magnevist (A complex of gadolinium with a chelating agent, diethylenetriamine penta-acetic acid, Gd-DTPA, r1 = 3.56 mM ·s ). Besides, as evaluated by nano single photon emission computed tomography (SPECT) and computed tomography (CT) the Gd-Au NCs have a potential application as CT contrast agents because of the Au element. Finally, the Gd-Au NCs show little cytotoxicity, even when the Au concentration is up to 250 μM. Thus, the Gd-Au NCs can act as multi-modal imaging contrast agents.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano6040065