A Two-Stage Composition Method for Danger-Aware Services Based on Context Similarity
Context-aware systems detect user's physical and social contexts based on sensor networks, and provide services that adapt to the user accordingly. Representing, detecting, and managing the contexts are important issues in context-aware systems. Composition of contexts is a useful method for th...
Saved in:
Published in | IEICE Transactions on Information and Systems Vol. E93.D; no. 6; pp. 1521 - 1539 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
The Institute of Electronics, Information and Communication Engineers
2010
Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Context-aware systems detect user's physical and social contexts based on sensor networks, and provide services that adapt to the user accordingly. Representing, detecting, and managing the contexts are important issues in context-aware systems. Composition of contexts is a useful method for these works, since it can detect a context by automatically composing small pieces of information to discover service. Danger-aware services are a kind of context-aware services which need description of relations between a user and his/her surrounding objects and between users. However when applying the existing composition methods to danger-aware services, they show the following shortcomings that (1) they have not provided an explicit method for representing composition of multi-user' contexts, (2) there is no flexible reasoning mechanism based on similarity of contexts, so that they can just provide services exactly following the predefined context reasoning rules. Therefore, in this paper, we propose a two-stage composition method based on context similarity to solve the above problems. The first stage is composition of the useful information to represent the context for a single user. The second stage is composition of multi-users' contexts to provide services by considering the relation of users. Finally the danger degree of the detected context is computed by using context similarity between the detected context and the predefined context. Context is dynamically represented based on two-stage composition rules and a Situation theory based Ontology, which combines the advantages of Ontology and Situation theory. We implement the system in an indoor ubiquitous environment, and evaluate the system through two experiments with the support of subjects. The experiment results show the method is effective, and the accuracy of danger detection is acceptable to a danger-aware system. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0916-8532 1745-1361 1745-1361 |
DOI: | 10.1587/transinf.E93.D.1521 |