Self-wavelength shifting in two-dimensional perovskite for sensitive and fast gamma-ray detection
Lead halide perovskites have recently emerged as promising X/γ-ray scintillators. However, the small Stokes shift of exciton luminescence in perovskite scintillators creates problems for the light extraction efficiency and severely impedes their applications in hard X/γ-ray detection. Dopants have b...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 2808 - 9 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.05.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Lead halide perovskites have recently emerged as promising X/γ-ray scintillators. However, the small Stokes shift of exciton luminescence in perovskite scintillators creates problems for the light extraction efficiency and severely impedes their applications in hard X/γ-ray detection. Dopants have been used to shift the emission wavelength, but the radioluminescence lifetime has also been unwantedly extended. Herein, we demonstrate the intrinsic strain in 2D perovskite crystals as a general phenomenon, which could be utilized as self-wavelength shifting to reduce the self-absorption effect without sacrificing the radiation response speed. Furthermore, we successfully demonstrated the first imaging reconstruction by perovskites for application of positron emission tomography. The coincidence time resolution for the optimized perovskite single crystals (4 × 4 × 0.8 mm
3
) reached 119 ± 3 ps. This work provides a new paradigm for suppressing the self-absorption effect in scintillators and may facilitate the application of perovskite scintillators in practical hard X/γ-ray detections.
Efficient light extraction in perovskite X/γ-ray scintillators is hindered by the small Stokes shift of exciton luminescence. Here, Jin et al. exploit the intrinsic strain in 2D perovskite as “self-wavelength shifting” to reduce the self-absorption effect without sacrificing the device response speed. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-023-38545-y |