Circulating miRNA expression in long-standing type 1 diabetes mellitus
Type 1 diabetes is a chronic autoimmune disease which results in inefficient regulation of glucose homeostasis and can lead to different vascular comorbidities through life. In this study we aimed to analyse the circulating miRNA expression profile of patients with type 1 diabetes, and with no other...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 8611 - 12 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.05.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-023-35836-8 |
Cover
Loading…
Summary: | Type 1 diabetes is a chronic autoimmune disease which results in inefficient regulation of glucose homeostasis and can lead to different vascular comorbidities through life. In this study we aimed to analyse the circulating miRNA expression profile of patients with type 1 diabetes, and with no other associated pathology. For this, fasting plasma was obtained from 85 subjects. Next generation sequencing analysis was firstly performed to identify miRNAs that were differentially expressed between groups (20 patients vs. 10 controls). hsa-miR-1-3p, hsa-miR-200b-3p, hsa-miR-9-5p, and hsa-miR-1200 expression was also measured by Taqman RT-PCR to validate the observed changes (34 patients vs. 21 controls). Finally, through a bioinformatic approach, the main pathways affected by the target genes of these miRNAs were studied. Among the studied miRNAs, hsa-miR-1-3p expression was found significantly increased in patients with type 1 diabetes compared to controls, and positively correlated with glycated haemoglobin levels. Additionally, by using a bioinformatic approach, we could observe that changes in hsa-miR-1-3p directly affect genes involved in vascular development and cardiovascular pathologies. Our results suggest that, circulating hsa-miR-1-3p in plasma, together with glycaemic control, could be used as prognostic biomarkers in type 1 diabetes, helping to prevent the development of vascular complications in these patients. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-35836-8 |