Strong and ductile high temperature soft magnets through Widmanstätten precipitates

Fast growth of sustainable energy production requires massive electrification of transport, industry and households, with electrical motors as key components. These need soft magnets with high saturation magnetization, mechanical strength, and thermal stability to operate efficiently and safely. Rec...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; p. 8176
Main Authors Han, Liuliu, Maccari, Fernando, Soldatov, Ivan, Peter, Nicolas J., Souza Filho, Isnaldi R., Schäfer, Rudolf, Gutfleisch, Oliver, Li, Zhiming, Raabe, Dierk
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.12.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fast growth of sustainable energy production requires massive electrification of transport, industry and households, with electrical motors as key components. These need soft magnets with high saturation magnetization, mechanical strength, and thermal stability to operate efficiently and safely. Reconciling these properties in one material is challenging because thermally-stable microstructures for strength increase conflict with magnetic performance. Here, we present a material concept that combines thermal stability, soft magnetic response, and high mechanical strength. The strong and ductile soft ferromagnet is realized as a multicomponent alloy in which precipitates with a large aspect ratio form a Widmanstätten pattern. The material shows excellent magnetic and mechanical properties at high temperatures while the reference alloy with identical composition devoid of precipitates significantly loses its magnetization and strength at identical temperatures. The work provides a new avenue to develop soft magnets for high-temperature applications, enabling efficient use of sustainable electrical energy under harsh operating conditions. Soft magnetic materials are critical components of electric motors, generators and transformers, however obtaining a material that is magnetically soft, but mechanically robust and stable at high temperature is very difficult. Here, Han et al succeed in combining these disparate properties by introducing ferromagnetic Widmanstätten patterned intermetallic precipitates into a ferromagnetic alloy matrix.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-43953-1