Mixed-linker strategy for suppressing structural flexibility of metal-organic framework membranes for gas separation

Structural flexibility is a critical issue that limits the application of metal-organic framework (MOF) membranes for gas separation. Herein we propose a mixed-linker approach to suppress the structural flexibility of the CAU-10-based (CAU = Christian-Albrechts-University) membranes. Specifically, p...

Full description

Saved in:
Bibliographic Details
Published inCommunications chemistry Vol. 6; no. 1; p. 118
Main Authors Chang, Chung-Kai, Ko, Ting-Rong, Lin, Tsai-Yu, Lin, Yen-Chun, Yu, Hyun Jung, Lee, Jong Suk, Li, Yi-Pei, Wu, Heng-Liang, Kang, Dun-Yen
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.06.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Structural flexibility is a critical issue that limits the application of metal-organic framework (MOF) membranes for gas separation. Herein we propose a mixed-linker approach to suppress the structural flexibility of the CAU-10-based (CAU = Christian-Albrechts-University) membranes. Specifically, pure CAU-10-PDC membranes display high separation performance but at the same time are highly unstable for the separation of CO 2 /CH 4 . A partial substitution (30 mol.%) of the linker PDC with BDC significantly improves its stability. Such an approach also allows for decreasing the aperture size of MOFs. The optimized CAU-10-PDC-H (70/30) membrane possesses a high separation performance for CO 2 /CH 4 (separation factor of 74.2 and CO 2 permeability of 1,111.1 Barrer under 2 bar of feed pressure at 35°C). A combination of in situ characterization with X-ray diffraction (XRD) and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, as well as periodic density functional theory (DFT) calculations, unveils the origin of the mixed-linker approach to enhancing the structural stability of the mixed-linker CAU-10-based membranes during the gas permeation tests. Metal–organic frameworks have demonstrated great promise for gas separation membranes, but their structural flexibility hinders their stability and hence sieving performance. Here, the authors systematically tune the ratio of mixed linkers in CAU-10-based MOF membranes, finding the optimal ratio that suppresses structural flexibility and enhances CO 2 /CH 4 separation performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2399-3669
2399-3669
DOI:10.1038/s42004-023-00917-2