Quantum computing for transport network design problems

Transport network design problem (TNDP) is a well-studied problem for planning and operations of transportation systems. They are widely used to determine links for capacity enhancement, link closures to schedule maintenance, identify new road or transit links and more generally network enhancements...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; p. 12267
Main Authors Dixit, Vinayak V., Niu, Chence
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.07.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Transport network design problem (TNDP) is a well-studied problem for planning and operations of transportation systems. They are widely used to determine links for capacity enhancement, link closures to schedule maintenance, identify new road or transit links and more generally network enhancements under resource constraints. As changes in network capacities result in a redistribution of demand on the network, resulting in changes in the congestion patterns, TNDP is generally modelled as a bi-level problem, which is known to be NP-hard. Meta-heuristic methods, such as Tabu Search Method are relied upon to solve these problems, which have been demonstrated to achieve near optimality in reasonable time. The advent of quantum computing has afforded an opportunity to solve these problems faster. We formulate the TNDP problem as a bi-level problem, with the upper level formulated as a Quadratic Unconstrained Binary Optimization (QUBO) problem that is solved using quantum annealing on a D-Wave quantum computer. We compare the results with Tabu Search. We find that quantum annealing provides significant computational benefit. The proposed solution has implications for networks across different contexts including communications, traffic, industrial operations, electricity, water, broader supply chains and epidemiology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-38787-2