A tripe diffusion bioconvective model for thixotropic nanofluid with applications of induced magnetic field

Owing to enhanced thermal characteristics of nanomaterials, multidisciplinary applications of such particles have been utilized in the industrial and engineering processes, chemical systems, solar energy, extrusion processes, nuclear systems etc. The aim of current work is to suggests the thermal pe...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 8232 - 13
Main Authors Albedah, Mohammed A., Li, Zhixiong, Tlili, Iskander
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.04.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Owing to enhanced thermal characteristics of nanomaterials, multidisciplinary applications of such particles have been utilized in the industrial and engineering processes, chemical systems, solar energy, extrusion processes, nuclear systems etc. The aim of current work is to suggests the thermal performances of thixotropic nanofluid with interaction of magnetic force. The suspension of microorganisms in thixotropic nanofluid is assumed. The investigation is further supported with the triple diffusion flow. The motivations for considering the triple diffusion phenomenon are associated to attaining more thermal applications. The flow pattern is subject to novel stagnation point flow. The convective thermal constraints are incorporated. The modeled problem is numerically evaluated by using shooting technique. Different consequences of physical parameters involving the problem are graphically attributed. The insight analysis is presented for proposed problem with different engineering applications. It is claimed that induced magnetic field enhanced due to magnetic parameter while declining results are observed for thixotropic parameter. The heat transfer enhances due to variation of Dufour number. Furthermore, low profile of nanoparticles concentration has been observed for thixotropic parameter and nano-Lewis number.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-58195-4