Differences in the consolidation by spontaneous and evoked ripples in the presence of active dendrites

Ripples are a typical form of neural activity in hippocampal neural networks associated with the replay of episodic memories during sleep as well as sleep-related plasticity and memory consolidation. The emergence of ripples has been observed both dependent as well as independent of input from other...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 20; no. 6; p. e1012218
Main Authors Jauch, Jannik, Becker, Moritz, Tetzlaff, Christian, Fauth, Michael Jan
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 25.06.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ripples are a typical form of neural activity in hippocampal neural networks associated with the replay of episodic memories during sleep as well as sleep-related plasticity and memory consolidation. The emergence of ripples has been observed both dependent as well as independent of input from other brain areas and often coincides with dendritic spikes. Yet, it is unclear how input-evoked and spontaneous ripples as well as dendritic excitability affect plasticity and consolidation. Here, we use mathematical modeling to compare these cases. We find that consolidation as well as the emergence of spontaneous ripples depends on a reliable propagation of activity in feed-forward structures which constitute memory representations. This propagation is facilitated by excitable dendrites, which entail that a few strong synapses are sufficient to trigger neuronal firing. In this situation, stimulation-evoked ripples lead to the potentiation of weak synapses within the feed-forward structure and, thus, to a consolidation of a more general sequence memory. However, spontaneous ripples that occur without stimulation, only consolidate a sparse backbone of the existing strong feed-forward structure. Based on this, we test a recently hypothesized scenario in which the excitability of dendrites is transiently enhanced after learning, and show that such a transient increase can strengthen, restructure and consolidate even weak hippocampal memories, which would be forgotten otherwise. Hence, a transient increase in dendritic excitability would indeed provide a mechanism for stabilizing memories.
Bibliography:new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1012218