Coordinate transcriptional regulation of ErbB2/3 by C-terminal binding protein 2 signals sensitivity to ErbB2 inhibition in pancreatic adenocarcinoma
There is a critical need to identify new therapeutic vulnerabilities in pancreatic ductal adenocarcinoma (PDAC). Transcriptional co-regulators C-terminal binding proteins (CtBP) 1 and 2 are highly overexpressed in human PDAC, and CRISPR-based homozygous deletion of Ctbp2 in a mouse PDAC cell line (C...
Saved in:
Published in | Oncogenesis (New York, NY) Vol. 12; no. 1; p. 53 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
10.11.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | There is a critical need to identify new therapeutic vulnerabilities in pancreatic ductal adenocarcinoma (PDAC). Transcriptional co-regulators C-terminal binding proteins (CtBP) 1 and 2 are highly overexpressed in human PDAC, and CRISPR-based homozygous deletion of
Ctbp2
in a mouse PDAC cell line (CKP) dramatically decreased tumor growth, reduced metastasis, and prolonged survival in orthotopic mouse allografts. Transcriptomic profiling of tumors derived from CKP vs.
Ctbp2
-deleted CKP cells (CKP/KO) revealed significant downregulation of the EGFR-superfamily receptor Erbb3, the heterodimeric signaling partner for both EGFR and ErbB2. Compared with CKP cells, CKP/KO cells also demonstrated reduced Erbb2 expression and did not activate downstream Akt signaling after stimulation of Erbb3 by its ligand neuregulin-1. ErbB3 expression in human PDAC cell lines was similarly dependent on CtBP2 and depletion of ErbB3 in a human PDAC cell line severely attenuated growth, demonstrating the critical role of ErbB3 signaling in maintaining PDAC cell growth. Sensitivity to the ErbB2-targeted tyrosine kinase inhibitor lapatinib, but not the EGFR-targeted agent erlotinib, varied in proportion to the level of ErbB3 expression in mouse and human PDAC cells, suggesting that an ErBb2 inhibitor can effectively leverage CtBP2-driven transcriptional activation of physiologic ErbB2/3 expression and signaling in PDAC cells for therapeutic benefit. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2157-9024 2157-9024 |
DOI: | 10.1038/s41389-023-00498-8 |