Three-stage ultrafast demagnetization dynamics in a monolayer ferromagnet

Intense laser pulses can be used to demagnetize a magnetic material on an extremely short timescale. While this ultrafast demagnetization offers the potential for new magneto-optical devices, it poses challenges in capturing coupled spin-electron and spin-lattice dynamics. In this article, we study...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 2804 - 9
Main Authors Wu, Na, Zhang, Shengjie, Chen, Daqiang, Wang, Yaxian, Meng, Sheng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 30.03.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Intense laser pulses can be used to demagnetize a magnetic material on an extremely short timescale. While this ultrafast demagnetization offers the potential for new magneto-optical devices, it poses challenges in capturing coupled spin-electron and spin-lattice dynamics. In this article, we study the photoinduced ultrafast demagnetization of a prototype monolayer ferromagnet Fe 3 GeTe 2 and resolve the three-stage demagnetization process characterized by an ultrafast and substantial demagnetization on a timescale of 100 fs, followed by light-induced coherent A 1g phonon dynamics which is strongly coupled to the spin dynamics in the next 200–800 fs. In the third stage, chiral lattice vibrations driven by nonlinear phonon couplings, both in-plane and out-of-plane are produced, resulting in significant spin precession. Nonadiabatic effects are found to introduce considerable phonon hardening and suppress the spin-lattice couplings during demagnetization. Our results advance our understanding of dynamic charge-spin-lattice couplings in the ultrafast demagnetization and evidence angular momentum transfer between the phonon and spin degrees of freedom. Ultrafast demagnetization refers to the process where an intense optical drive can destroy the magnetic order in a magnetic material on a femto-second timescale. Here, Wu et al resolve a three-stage ultrafast demagnetization process in a monolayer of Fe3GeTe2.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-47128-4