Incorporating catechol into electroactive polypyrrole nanowires on titanium to promote hydroxyapatite formation
To improve the osteointegration property of biomedical titanium, nano-architectured electroactive coating was synthesized through the electrochemical polymerization of dopamine and pyrrole. The highly binding affinity of Ca2+ to the catechol moiety of doped dopamine enabled efficient interaction bet...
Saved in:
Published in | Bioactive materials Vol. 3; no. 1; pp. 74 - 79 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
China
Elsevier B.V
01.03.2018
KeAi Publishing KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To improve the osteointegration property of biomedical titanium, nano-architectured electroactive coating was synthesized through the electrochemical polymerization of dopamine and pyrrole. The highly binding affinity of Ca2+ to the catechol moiety of doped dopamine enabled efficient interaction between polypyrrole/polydopamine nanowires and mineral ions. The results indicate that the PPy/PDA nanowires preserved its efficient electro-activity and accelerated the hydroxyapatite deposition in a simulated body fluid. The PPy/PDA nanowires coating could be applied to promote the osteointegration of titanium implant.
[Display omitted]
•Nanowires were constructed through electrochemical polymerization of pyrrole and dapamine•The PPy/PDA nanowires possessed wonderful electroactivity.•The PPy/PDA nanowires could promote Hydroxyapatite formation. |
---|---|
AbstractList | To improve the osteointegration property of biomedical titanium, nano-architectured electroactive coating was synthesized through the electrochemical polymerization of dopamine and pyrrole. The highly binding affinity of Ca2+ to the catechol moiety of doped dopamine enabled efficient interaction between polypyrrole/polydopamine nanowires and mineral ions. The results indicate that the PPy/PDA nanowires preserved its efficient electro-activity and accelerated the hydroxyapatite deposition in a simulated body fluid. The PPy/PDA nanowires coating could be applied to promote the osteointegration of titanium implant. To improve the osteointegration property of biomedical titanium, nano-architectured electroactive coating was synthesized through the electrochemical polymerization of dopamine and pyrrole. The highly binding affinity of Ca2+ to the catechol moiety of doped dopamine enabled efficient interaction between polypyrrole/polydopamine nanowires and mineral ions. The results indicate that the PPy/PDA nanowires preserved its efficient electro-activity and accelerated the hydroxyapatite deposition in a simulated body fluid. The PPy/PDA nanowires coating could be applied to promote the osteointegration of titanium implant.To improve the osteointegration property of biomedical titanium, nano-architectured electroactive coating was synthesized through the electrochemical polymerization of dopamine and pyrrole. The highly binding affinity of Ca2+ to the catechol moiety of doped dopamine enabled efficient interaction between polypyrrole/polydopamine nanowires and mineral ions. The results indicate that the PPy/PDA nanowires preserved its efficient electro-activity and accelerated the hydroxyapatite deposition in a simulated body fluid. The PPy/PDA nanowires coating could be applied to promote the osteointegration of titanium implant. To improve the osteointegration property of biomedical titanium, nano-architectured electroactive coating was synthesized through the electrochemical polymerization of dopamine and pyrrole. The highly binding affinity of Ca 2+ to the catechol moiety of doped dopamine enabled efficient interaction between polypyrrole/polydopamine nanowires and mineral ions. The results indicate that the PPy/PDA nanowires preserved its efficient electro-activity and accelerated the hydroxyapatite deposition in a simulated body fluid. The PPy/PDA nanowires coating could be applied to promote the osteointegration of titanium implant. Image 1 • Nanowires were constructed through electrochemical polymerization of pyrrole and dapamine • The PPy/PDA nanowires possessed wonderful electroactivity. • The PPy/PDA nanowires could promote Hydroxyapatite formation. To improve the osteointegration property of biomedical titanium, nano-architectured electroactive coating was synthesized through the electrochemical polymerization of dopamine and pyrrole. The highly binding affinity of Ca to the catechol moiety of doped dopamine enabled efficient interaction between polypyrrole/polydopamine nanowires and mineral ions. The results indicate that the PPy/PDA nanowires preserved its efficient electro-activity and accelerated the hydroxyapatite deposition in a simulated body fluid. The PPy/PDA nanowires coating could be applied to promote the osteointegration of titanium implant. To improve the osteointegration property of biomedical titanium, nano-architectured electroactive coating was synthesized through the electrochemical polymerization of dopamine and pyrrole. The highly binding affinity of Ca2+ to the catechol moiety of doped dopamine enabled efficient interaction between polypyrrole/polydopamine nanowires and mineral ions. The results indicate that the PPy/PDA nanowires preserved its efficient electro-activity and accelerated the hydroxyapatite deposition in a simulated body fluid. The PPy/PDA nanowires coating could be applied to promote the osteointegration of titanium implant. [Display omitted] •Nanowires were constructed through electrochemical polymerization of pyrrole and dapamine•The PPy/PDA nanowires possessed wonderful electroactivity.•The PPy/PDA nanowires could promote Hydroxyapatite formation. |
Author | Chen, Junqi Yu, Peng Wang, Qiyou Zeng, Jinquan Zhou, Lei Ning, Chengyun Liao, Jingwen Wang, Zhengao Tan, Guoxin |
AuthorAffiliation | c Guangzhou Tieyi Middle School, Guangzhou 510660, China e Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 510006, China d Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China a School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China b Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China f Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China |
AuthorAffiliation_xml | – name: d Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China – name: c Guangzhou Tieyi Middle School, Guangzhou 510660, China – name: e Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 510006, China – name: f Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China – name: a School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China – name: b Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China |
Author_xml | – sequence: 1 givenname: Zhengao surname: Wang fullname: Wang, Zhengao organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China – sequence: 2 givenname: Jinquan surname: Zeng fullname: Zeng, Jinquan organization: Guangzhou Tieyi Middle School, Guangzhou 510660, China – sequence: 3 givenname: Guoxin surname: Tan fullname: Tan, Guoxin organization: Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China – sequence: 4 givenname: Jingwen surname: Liao fullname: Liao, Jingwen organization: Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 510006, China – sequence: 5 givenname: Lei surname: Zhou fullname: Zhou, Lei organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China – sequence: 6 givenname: Junqi surname: Chen fullname: Chen, Junqi organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China – sequence: 7 givenname: Peng surname: Yu fullname: Yu, Peng email: imyup@scut.edu.cn organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China – sequence: 8 givenname: Qiyou surname: Wang fullname: Wang, Qiyou email: wqiyou@163.com organization: Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China – sequence: 9 givenname: Chengyun surname: Ning fullname: Ning, Chengyun email: imcyning@scut.edu.cn organization: School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29744443$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1v1DAQjVARLaV_AXLksos_4iQ-gFRVFFaqxAUkbpYzmex6lXiC413Iv8fbLauWC_jgz_fezHjey-zMk8cse8PZkjNevtsuG0cW4mDjUjBeLZlaMlY-yy5EocSCa_397NH-PLuapi1jCZkmVr3IzoWuijTkRUYrDxRGCjY6v87BRoQN9bnzkXLsEWI4hHJ7zEfq53EOgXrMvfX00wWccvJ5dNF6txvyRBkDDRQx38xtoF-zHZNuOnYUUraO_KvseWf7Ca8e1svs2-3HrzefF3dfPq1uru8WoAoeF6UqlQToEFndalkrYLIqseZMayGg0twiKwtZdEVdayhsC0y0XIBlGjoF8jJbHXVbslszBjfYMBuyztxfUFgbG6KDHo3kVtWCAUqri66RjeyaGjD9jypFiyxpfThqjbtmwBbQx2D7J6JPX7zbmDXtjdIy1VEmgbcPAoF-7HCKZnATYN9bj7SbjEjFMVVILhP09eNYpyB_OpYA1REAgaYpYHeCcGYO9jBbc7KHOdjDMGWSPRLz_V9MSI07NCUl7fr_4F8f-Zj6tncYzAQOPWCbjAAxfaz7p8ZvqlHgPg |
CitedBy_id | crossref_primary_10_1021_acsami_1c25180 crossref_primary_10_1002_adhm_202304349 crossref_primary_10_1007_s00289_021_03793_9 crossref_primary_10_1016_j_apsusc_2021_149411 crossref_primary_10_1016_j_matdes_2020_109162 crossref_primary_10_1021_acsapm_2c01731 crossref_primary_10_1016_j_jddst_2020_101537 crossref_primary_10_1002_btm2_10385 crossref_primary_10_1016_j_mtcomm_2023_106747 crossref_primary_10_1002_adhm_202401305 crossref_primary_10_1002_cnma_202100542 crossref_primary_10_1016_j_bioactmat_2020_04_003 |
Cites_doi | 10.1021/acsnano.6b02247 10.1038/nrg1272 10.1016/j.electacta.2010.06.006 10.1016/j.surfcoat.2015.09.033 10.1021/am5017478 10.1002/anie.201406349 10.1016/j.biomaterials.2008.04.047 10.1016/j.mattod.2015.11.005 10.1016/j.progpolymsci.2007.05.012 10.1021/cr400407a 10.1016/j.matlet.2014.10.062 10.1039/c0jm01339k 10.1002/marc.201300843 10.1002/jbm.a.10482 10.1002/adfm.201403115 10.1039/c0jm01527j 10.1039/C6RA00889E 10.1002/jbm.10280 10.1016/j.dental.2006.06.025 |
ContentType | Journal Article |
Copyright | 2018 The Authors 2018 The Authors 2018 |
Copyright_xml | – notice: 2018 The Authors – notice: 2018 The Authors 2018 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.bioactmat.2017.05.006 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-199X |
EndPage | 79 |
ExternalDocumentID | oai_doaj_org_article_31a5820ce3a94fb3b3fb8ce444562de0 PMC5935656 29744443 10_1016_j_bioactmat_2017_05_006 S2452199X17300440 |
Genre | Journal Article |
GroupedDBID | 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAYWO AAYXX ABJCF ACVFH ADCNI ADMLS ADVLN AEUPX AFKRA AFPUW AIGII AKBMS AKRWK AKYEP BBNVY BENPR BGLVJ BHPHI CCPQU CITATION HCIFZ KB. M7P M~E PDBOC PHGZM PHGZT PIMPY NPM 7X8 5PM |
ID | FETCH-LOGICAL-c541t-65653ccfee08d9385c0376e8109922c791ae06434f4889c4adc02d12ca09cf5c3 |
IEDL.DBID | DOA |
ISSN | 2452-199X |
IngestDate | Wed Aug 27 01:31:48 EDT 2025 Thu Aug 21 18:32:50 EDT 2025 Fri Jul 11 04:53:27 EDT 2025 Wed Feb 19 02:44:36 EST 2025 Tue Jul 01 02:11:22 EDT 2025 Thu Apr 24 23:03:49 EDT 2025 Wed May 17 01:36:02 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Titanium Hydroxyapatite Catechol Nanowires Polypyrrole |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-65653ccfee08d9385c0376e8109922c791ae06434f4889c4adc02d12ca09cf5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/31a5820ce3a94fb3b3fb8ce444562de0 |
PMID | 29744443 |
PQID | 2037054313 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_31a5820ce3a94fb3b3fb8ce444562de0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5935656 proquest_miscellaneous_2037054313 pubmed_primary_29744443 crossref_primary_10_1016_j_bioactmat_2017_05_006 crossref_citationtrail_10_1016_j_bioactmat_2017_05_006 elsevier_sciencedirect_doi_10_1016_j_bioactmat_2017_05_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-01 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | China |
PublicationPlace_xml | – name: China |
PublicationTitle | Bioactive materials |
PublicationTitleAlternate | Bioact Mater |
PublicationYear | 2018 |
Publisher | Elsevier B.V KeAi Publishing KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Publishing – name: KeAi Communications Co., Ltd |
References | Liao, Wu, Yin, Huang, Ning, Tan, Chu (bib15) 2014; 6 Liao, Zhu, Zhou, Chen, Tan, Ning, Mao (bib6) 2014; 53 Arechederra, Jenkins, Rincon, Artyushkova, Atanassov, Minteer (bib14) 2010; 55 Le Guehennec, Soueidan, Layrolle, Amouriq (bib1) 2007; 23 Ning, Zhou, Tan (bib4) 2016; 19 Koutsopoulos, Biomed (bib18) 2002; 62 Lee, Ku, Ryu, Park (bib19) 2010; 20 Oyane, Kim, Furuya, Kokubo, Miyazaki, Nakamura (bib16) 2003; 65 Lin, Zhong, Zheng, Cao, Wang, Wang, Liang, Cao (bib13) 2015; 281 Barabasi, Oltvai (bib3) 2004; 5 Guimard, Gomez, Schmidt (bib5) 2007; 32 Keeley, O'Neill, McEvoy, Peltekis, Coleman, Duesberg (bib17) 2010; 20 Zhang, Zhang, Lin, Hu, Shen, Wang, Meng, Chai, Dai, Liu, Liu, Mo, Cao, Li, Deng, Chen (bib2) 2016; 10 Zhang, Pan, Yang, Zhao (bib12) 2015; 25 Liu, Ai, Lu (bib11) 2014; 114 Liao, Pan, Ning, Tan, Zhou, Chen, Huang (bib9) 2014; 35 Liu, Du, Guo, Wu, Qiu (bib8) 2015; 139 Green, Lovell, Wallace, Poole-Warren (bib7) 2008; 29 de Castro, Rodrigues, Ricci, Costa, Ribeiro, Marciano, Lobo (bib10) 2016; 6 Lee (10.1016/j.bioactmat.2017.05.006_bib19) 2010; 20 Liu (10.1016/j.bioactmat.2017.05.006_bib8) 2015; 139 Zhang (10.1016/j.bioactmat.2017.05.006_bib12) 2015; 25 Liu (10.1016/j.bioactmat.2017.05.006_bib11) 2014; 114 Liao (10.1016/j.bioactmat.2017.05.006_bib15) 2014; 6 Green (10.1016/j.bioactmat.2017.05.006_bib7) 2008; 29 Lin (10.1016/j.bioactmat.2017.05.006_bib13) 2015; 281 Arechederra (10.1016/j.bioactmat.2017.05.006_bib14) 2010; 55 Zhang (10.1016/j.bioactmat.2017.05.006_bib2) 2016; 10 Liao (10.1016/j.bioactmat.2017.05.006_bib9) 2014; 35 Guimard (10.1016/j.bioactmat.2017.05.006_bib5) 2007; 32 de Castro (10.1016/j.bioactmat.2017.05.006_bib10) 2016; 6 Oyane (10.1016/j.bioactmat.2017.05.006_bib16) 2003; 65 Liao (10.1016/j.bioactmat.2017.05.006_bib6) 2014; 53 Barabasi (10.1016/j.bioactmat.2017.05.006_bib3) 2004; 5 Ning (10.1016/j.bioactmat.2017.05.006_bib4) 2016; 19 Le Guehennec (10.1016/j.bioactmat.2017.05.006_bib1) 2007; 23 Keeley (10.1016/j.bioactmat.2017.05.006_bib17) 2010; 20 Koutsopoulos (10.1016/j.bioactmat.2017.05.006_bib18) 2002; 62 |
References_xml | – volume: 6 start-page: 32615 year: 2016 end-page: 32623 ident: bib10 article-title: Designing a novel nanocomposite for bone tissue engineering using electrospun conductive PBAT/polypyrrole as a scaffold to direct nanohydroxyapatite electrodeposition publication-title: RSC Adv. – volume: 6 start-page: 10946 year: 2014 end-page: 10951 ident: bib15 article-title: Surface-dependent self-assembly of conducting polypyrrole nanotube arrays in template-free electrochemical polymerization publication-title: ACS Appl. Mater. Interfaces – volume: 62 start-page: 600 year: 2002 end-page: 612 ident: bib18 article-title: Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods publication-title: J. Biomed. Mater. Res. – volume: 29 start-page: 3393 year: 2008 end-page: 3399 ident: bib7 article-title: Conducting polymers for neural interfaces: challenges in developing an effective long-term implant publication-title: Biomaterials – volume: 10 start-page: 7279 year: 2016 end-page: 7286 ident: bib2 article-title: Nanocomposite membranes enhance bone regeneration through restoring physiological electric microenvironment publication-title: ACS Nano – volume: 35 start-page: 574 year: 2014 end-page: 578 ident: bib9 article-title: Taurine-Induced fabrication of nano-architectured conducting polypyrrole on biomedical titanium publication-title: Macromol. Rapid Commun. – volume: 53 start-page: 13068 year: 2014 end-page: 13072 ident: bib6 article-title: Reversibly controlling preferential protein adsorption on bone implants by using an applied weak potential as a switch publication-title: Angew. Chem. Int. Ed. – volume: 139 start-page: 191 year: 2015 end-page: 193 ident: bib8 article-title: Facile mass production of semi-conductive polypyrrole/polystyrene composite with enhanced mechanical strength via in-situ bulk polymerization publication-title: Mater. Lett. – volume: 20 start-page: 8848 year: 2010 end-page: 8853 ident: bib19 article-title: Mussel-inspired functionalization of carbon nanotubes for hydroxyapatite mineralization publication-title: J. Mater. Chem. – volume: 19 start-page: 2 year: 2016 end-page: 3 ident: bib4 article-title: Fourth-generation biomedical materials publication-title: Mater. Today – volume: 114 start-page: 5057 year: 2014 end-page: 5115 ident: bib11 article-title: Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields publication-title: Chem. Rev. – volume: 5 start-page: 101 year: 2004 end-page: 115 ident: bib3 article-title: Network biology: understanding the cell's functional organization publication-title: Nat. Rev. Genet. – volume: 32 start-page: 876 year: 2007 end-page: 921 ident: bib5 article-title: Conducting polymers in biomedical engineering publication-title: Prog. Polym. Sci. – volume: 281 start-page: 82 year: 2015 end-page: 88 ident: bib13 article-title: Preparation and characterization of dopamine-induced biomimetic hydroxyapatite coatings on the AZ31 magnesium alloy publication-title: Surf. Coat. Technol. – volume: 20 start-page: 7864 year: 2010 end-page: 7869 ident: bib17 article-title: Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene publication-title: J. Mater. Chem. – volume: 65 start-page: 188 year: 2003 end-page: 195 ident: bib16 article-title: Preparation and assessment of revised simulated body fluids publication-title: J. Biomed. Mater. Res. Part A – volume: 25 start-page: 1588 year: 2015 end-page: 1597 ident: bib12 article-title: A facile in situ approach to polypyrrole functionalization through bioinspired catechols publication-title: Adv. Funct. Mater – volume: 55 start-page: 6659 year: 2010 end-page: 6664 ident: bib14 article-title: Chemical polymerization and electrochemical characterization of thiazines for NADH electrocatalysis applications publication-title: Electrochim. Acta – volume: 23 start-page: 844 year: 2007 end-page: 854 ident: bib1 article-title: Surface treatments of titanium dental implants for rapid osseointegration publication-title: Dent. Mater. – volume: 10 start-page: 7279 year: 2016 ident: 10.1016/j.bioactmat.2017.05.006_bib2 article-title: Nanocomposite membranes enhance bone regeneration through restoring physiological electric microenvironment publication-title: ACS Nano doi: 10.1021/acsnano.6b02247 – volume: 5 start-page: 101 year: 2004 ident: 10.1016/j.bioactmat.2017.05.006_bib3 article-title: Network biology: understanding the cell's functional organization publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1272 – volume: 55 start-page: 6659 year: 2010 ident: 10.1016/j.bioactmat.2017.05.006_bib14 article-title: Chemical polymerization and electrochemical characterization of thiazines for NADH electrocatalysis applications publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.06.006 – volume: 281 start-page: 82 year: 2015 ident: 10.1016/j.bioactmat.2017.05.006_bib13 article-title: Preparation and characterization of dopamine-induced biomimetic hydroxyapatite coatings on the AZ31 magnesium alloy publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2015.09.033 – volume: 6 start-page: 10946 year: 2014 ident: 10.1016/j.bioactmat.2017.05.006_bib15 article-title: Surface-dependent self-assembly of conducting polypyrrole nanotube arrays in template-free electrochemical polymerization publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5017478 – volume: 53 start-page: 13068 year: 2014 ident: 10.1016/j.bioactmat.2017.05.006_bib6 article-title: Reversibly controlling preferential protein adsorption on bone implants by using an applied weak potential as a switch publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201406349 – volume: 29 start-page: 3393 year: 2008 ident: 10.1016/j.bioactmat.2017.05.006_bib7 article-title: Conducting polymers for neural interfaces: challenges in developing an effective long-term implant publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.04.047 – volume: 19 start-page: 2 year: 2016 ident: 10.1016/j.bioactmat.2017.05.006_bib4 article-title: Fourth-generation biomedical materials publication-title: Mater. Today doi: 10.1016/j.mattod.2015.11.005 – volume: 32 start-page: 876 year: 2007 ident: 10.1016/j.bioactmat.2017.05.006_bib5 article-title: Conducting polymers in biomedical engineering publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2007.05.012 – volume: 114 start-page: 5057 year: 2014 ident: 10.1016/j.bioactmat.2017.05.006_bib11 article-title: Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields publication-title: Chem. Rev. doi: 10.1021/cr400407a – volume: 139 start-page: 191 year: 2015 ident: 10.1016/j.bioactmat.2017.05.006_bib8 article-title: Facile mass production of semi-conductive polypyrrole/polystyrene composite with enhanced mechanical strength via in-situ bulk polymerization publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.10.062 – volume: 20 start-page: 8848 year: 2010 ident: 10.1016/j.bioactmat.2017.05.006_bib19 article-title: Mussel-inspired functionalization of carbon nanotubes for hydroxyapatite mineralization publication-title: J. Mater. Chem. doi: 10.1039/c0jm01339k – volume: 35 start-page: 574 year: 2014 ident: 10.1016/j.bioactmat.2017.05.006_bib9 article-title: Taurine-Induced fabrication of nano-architectured conducting polypyrrole on biomedical titanium publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201300843 – volume: 65 start-page: 188 year: 2003 ident: 10.1016/j.bioactmat.2017.05.006_bib16 article-title: Preparation and assessment of revised simulated body fluids publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.10482 – volume: 25 start-page: 1588 year: 2015 ident: 10.1016/j.bioactmat.2017.05.006_bib12 article-title: A facile in situ approach to polypyrrole functionalization through bioinspired catechols publication-title: Adv. Funct. Mater doi: 10.1002/adfm.201403115 – volume: 20 start-page: 7864 year: 2010 ident: 10.1016/j.bioactmat.2017.05.006_bib17 article-title: Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene publication-title: J. Mater. Chem. doi: 10.1039/c0jm01527j – volume: 6 start-page: 32615 year: 2016 ident: 10.1016/j.bioactmat.2017.05.006_bib10 article-title: Designing a novel nanocomposite for bone tissue engineering using electrospun conductive PBAT/polypyrrole as a scaffold to direct nanohydroxyapatite electrodeposition publication-title: RSC Adv. doi: 10.1039/C6RA00889E – volume: 62 start-page: 600 year: 2002 ident: 10.1016/j.bioactmat.2017.05.006_bib18 article-title: Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.10280 – volume: 23 start-page: 844 year: 2007 ident: 10.1016/j.bioactmat.2017.05.006_bib1 article-title: Surface treatments of titanium dental implants for rapid osseointegration publication-title: Dent. Mater. doi: 10.1016/j.dental.2006.06.025 |
SSID | ssj0001700007 |
Score | 2.1554375 |
Snippet | To improve the osteointegration property of biomedical titanium, nano-architectured electroactive coating was synthesized through the electrochemical... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 74 |
SubjectTerms | Catechol Hydroxyapatite Nanowires Polypyrrole Titanium |
Title | Incorporating catechol into electroactive polypyrrole nanowires on titanium to promote hydroxyapatite formation |
URI | https://dx.doi.org/10.1016/j.bioactmat.2017.05.006 https://www.ncbi.nlm.nih.gov/pubmed/29744443 https://www.proquest.com/docview/2037054313 https://pubmed.ncbi.nlm.nih.gov/PMC5935656 https://doaj.org/article/31a5820ce3a94fb3b3fb8ce444562de0 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTlyqImi7fMlIvUZNYjsb9waoCCq1pyLtzfJXRBA4K8ge9t93xs5Gm3LYC7kltqPYM_Y8K89vCPlWWttwYYrMMYBvXBQsM7nzGRNmbipZOR7PV_z-U93e818LsdhK9YWcsCQPnAbuOyu0gChlPdOSN4YZ1pjaes4Rujsfd-sQ87Y2U49JFAajH2aW46JENsViQu4ybadtD5gQyV1JuxNzHm2FpqjgP4lQbxHo_0TKrch084l8HCAlvUxdOSAffDgk3R0KVEaRYghOFHlPuNDRNvQdHXLf6LjW0WX3tF6uX5BnSIMOHaoXv9IuUDx_FtrVM4Umy0jb8_Rh7ZD4opGIDbfj2ccjcn_z8-_1bTYkV8is4EWfAY4TDAzlfV47yWphc1hrfI1_ysrSzmWhPcIV3sAUl5ZrZ_PSFaXVubSNsOwz2Qtd8F8JNRxq6gY2fgXjUZ9eam8dq4SpCiv1jFSbcVV2UB7HBBhPakMxe1SjQRQaROVCgUFmJB8bLpP4xu4mV2i4sTqqZ8cH4FNq8Cm1y6dm5MfG7GoAIglgwKva3V9wsXEUBVMV_7_o4LvVK1Ri8xy1B9iMfEmOM35nCfs6uKBkPnGpSUemJaF9iHLgQjJE5cfv0fMTsg9dqRPJ7pTs9S8rfwaoqzfncYL9A9KQLnE |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporating+catechol+into+electroactive+polypyrrole+nanowires+on+titanium+to+promote+hydroxyapatite+formation&rft.jtitle=Bioactive+materials&rft.au=Zhengao+Wang&rft.au=Jinquan+Zeng&rft.au=Guoxin+Tan&rft.au=Jingwen+Liao&rft.date=2018-03-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.issn=2452-199X&rft.eissn=2452-199X&rft.volume=3&rft.issue=1&rft.spage=74&rft.epage=79&rft_id=info:doi/10.1016%2Fj.bioactmat.2017.05.006&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_31a5820ce3a94fb3b3fb8ce444562de0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon |