Naturally occurring quercetin and myricetin as potent inhibitors for human ectonucleotide pyrophosphatase/phosphodiesterase 1

Ecto-nucleotide pyrophosphatases/phosphodiesterases 1 (ENPP1) is a key enzyme in purinergic signaling pathways responsible for cell-to-cell communications and regulation of several fundamental pathophysiological processes. In this study, Kyoto Green, a rapid chemical sensor of pyrophosphate, was emp...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; p. 125
Main Authors Duangiad, Peeradon, Nutho, Bodee, Chaijarasphong, Thawatchai, Morales, Noppawan Phumala, Pongtharangkul, Thunyarat, Hamachi, Itaru, Ojida, Akio, Wongkongkatep, Jirarut
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.01.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ecto-nucleotide pyrophosphatases/phosphodiesterases 1 (ENPP1) is a key enzyme in purinergic signaling pathways responsible for cell-to-cell communications and regulation of several fundamental pathophysiological processes. In this study, Kyoto Green, a rapid chemical sensor of pyrophosphate, was employed to screen for effective ENPP1 inhibitors among five representative flavonoids (quercetin, myricetin, morin, kaempferol, and quercetin-3-glucoside), five nucleosides (adenosine, guanosine, inosine, uridine, and cytidine), and five deoxynucleosides (2′- and 3′-deoxyadenosine, 2′-deoxyguanosine, 2′-deoxyinosine, and 2′-deoxyuridine). Conventional colorimetric, fluorescence, and bioluminescence assays revealed that ENPP1 was effectively inhibited by quercetin ( K i  ~ 4 nM) and myricetin ( K i  ~ 32 nM) when ATP was used as a substrate at pH 7.4. In silico analysis indicated that the presence of a chromone scaffold, particularly one containing a hydroxyl group at the 3′ position on the B ring, may promote binding to the active site pocket of ENPP1 and enhance inhibition. This study demonstrated that the naturally derived quercetin and myricetin could effectively inhibit ENPP1 enzymatic activity and may offer health benefits in arthritis management.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-50590-7