Mechanical analysis and toughening mechanisms of a multiphase recycled CFRP

The mechanical response of a recycled CFRP is investigated experimentally. A complex multiscale microstructure is revealed, with both dispersed fibres (with fractured-sections) and fibre-bundles. The specific properties of the recyclate compare favourably with those of aluminium and glass–fibre comp...

Full description

Saved in:
Bibliographic Details
Published inComposites science and technology Vol. 70; no. 12; pp. 1713 - 1725
Main Authors Pimenta, Soraia, Pinho, Silvestre T., Robinson, Paul, Wong, Kok H., Pickering, Stephen J.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.10.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The mechanical response of a recycled CFRP is investigated experimentally. A complex multiscale microstructure is revealed, with both dispersed fibres (with fractured-sections) and fibre-bundles. The specific properties of the recyclate compare favourably with those of aluminium and glass–fibre composites. Micromechanical studies show that tensile failure follows the pre-existing fractured-sections on the dispersed-fibres, while compressive failure occurs by shear-banding. Fracture toughness measurements coupled with SEM evidence how bundles considerably toughen the composite by complex failure mechanisms. This analysis can guide the optimisation of recycling processes and support the development of design methods for recycled CFRP; it also provides insight on the mechanical response of other multiphase short-fibre reinforced materials.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0266-3538
1879-1050
DOI:10.1016/j.compscitech.2010.06.017