Gasdermin E dictates inflammatory responses by controlling the mode of neutrophil death

Both lytic and apoptotic cell death remove senescent and damaged cells in living organisms. However, they elicit contrasting pro- and anti-inflammatory responses, respectively. The precise cellular mechanism that governs the choice between these two modes of death remains incompletely understood. He...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; p. 386
Main Authors Ma, Fengxia, Ghimire, Laxman, Ren, Qian, Fan, Yuping, Chen, Tong, Balasubramanian, Arumugam, Hsu, Alan, Liu, Fei, Yu, Hongbo, Xie, Xuemei, Xu, Rong, Luo, Hongbo R.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.01.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Both lytic and apoptotic cell death remove senescent and damaged cells in living organisms. However, they elicit contrasting pro- and anti-inflammatory responses, respectively. The precise cellular mechanism that governs the choice between these two modes of death remains incompletely understood. Here we identify Gasdermin E (GSDME) as a master switch for neutrophil lytic pyroptotic death. The tightly regulated GSDME cleavage and activation in aging neutrophils are mediated by proteinase-3 and caspase-3, leading to pyroptosis. GSDME deficiency does not alter neutrophil overall survival rate; instead, it specifically precludes pyroptosis and skews neutrophil death towards apoptosis, thereby attenuating inflammatory responses due to augmented efferocytosis of apoptotic neutrophils by macrophages. In a clinically relevant acid-aspiration-induced lung injury model, neutrophil-specific deletion of GSDME reduces pulmonary inflammation, facilitates inflammation resolution, and alleviates lung injury. Thus, by controlling the mode of neutrophil death, GSDME dictates host inflammatory outcomes, providing a potential therapeutic target for infectious and inflammatory diseases. Apoptotic and lytic cell death pathways are both utilised in the removal of damaged cells; however, the downstream inflammatory outcomes widely vary according to the chosen pathway. Here authors show that in mice with genetic deletion of Gasdermin E specifically in neutrophils, these cells undergo apoptosis rather than pyroptotic cell death upon senescence, with consequential attenuation of reactive inflammatory responses.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-44669-y