Design of an Epitope-Based Peptide Vaccine Against the Major Allergen Amb a 11 Using Immunoinformatic Approaches
Allergic diseases are a socially significant problem of global importance. The number of people suffering from pollen allergies has increased dramatically in recent decades. Pollen allergies affect up to 30% of the world population. Pollen of the common ragweed ( Ambrosia artemisiifolia L.) is one o...
Saved in:
Published in | The Protein Journal Vol. 41; no. 2; pp. 315 - 326 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Allergic diseases are a socially significant problem of global importance. The number of people suffering from pollen allergies has increased dramatically in recent decades. Pollen allergies affect up to 30% of the world population. Pollen of the common ragweed (
Ambrosia artemisiifolia
L.) is one of the most aggressive allergens in the world. We have used a series of immunoinformatics approaches to design an effective epitope-based vaccine, which might induce a competent immunity against a major allergen Amb a 11. CD8+ and CD4+ T-cell epitopes and their corresponding MHC restricted alleles were identified by prediction tools provided by immune epitope database (IEDB). Among T-cell epitopes, MHC class I peptide (GLMEPAFTYV) and MHC class II peptide (LVCFSFSLVLILGLV) were identified as most suitable. From all predicted B-cell epitopes, only one epitope (GKLVKF
SEQQLVDC
) containing sequence from the conserved region was chosen for next processing. Selected epitopes have been validated by molecular docking analysis. These epitopes showed a very strong binding affinity to MHC I molecule and MHC II molecule with binding energy scores − 729.3 and − 725.0 kcal/mole respectively. Performed experimental validation showed that only the MHC class II peptide (LVCFSFSLVLILGLV) can stimulate T cells from ragweed allergic patients and IgE antibodies specific to the ragweed pollen do not recognize this epitope. Therefore, this peptide could be potentially used as a vaccine against the major allergen Amb a 11. The B-cell epitope GKLVKF
SEQQLVDC
forms a stable complex with the IgE molecule (energy weighted score − 695,0 kcal/mole). Tested sera from patients with ragweed allergy showed that the ragweed specific IgE antibodies can bind to the identified B-cell epitope. Population coverage analysis was performed for CD8+ and CD4+ T-cell epitopes. It was predicted that CD4+ T-cell epitope (LVCFSFSLVLILGLV) covers 90.56% of the population of Europe and 99.36% of the world population. CD8+ T-cell epitope (GLMEPAFTYV) has a population coverage of 77.37% for Europe and 71.35% for all the world. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1572-3887 1875-8355 1573-4943 |
DOI: | 10.1007/s10930-022-10050-z |