Slug overexpression induces stemness and promotes hepatocellular carcinoma cell invasion and metastasis

Detection of metastasis of hepatocellular carcinoma (HCC) is crucial for early diagnosis. Epithelial-mesenchymal transition (EMT) is a common event in the metastasis of tumor cells. Slug and Snail are homologous proteins, which play an important role in EMT. The present study aimed to investigate wh...

Full description

Saved in:
Bibliographic Details
Published inOncology letters Vol. 7; no. 6; pp. 1936 - 1940
Main Authors SUN, YU, SONG, GUO-DONG, SUN, NING, CHEN, JIAN-QIU, YANG, SHAO-SHI
Format Journal Article
LanguageEnglish
Published Greece D.A. Spandidos 01.06.2014
Spandidos Publications
Spandidos Publications UK Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Detection of metastasis of hepatocellular carcinoma (HCC) is crucial for early diagnosis. Epithelial-mesenchymal transition (EMT) is a common event in the metastasis of tumor cells. Slug and Snail are homologous proteins, which play an important role in EMT. The present study aimed to investigate whether Slug and Snail overexpression is associated with the invasiveness of HCC in vitro and in vivo. Invasion, colony formation and wound healing assays, as well as flow cytometry analysis, were performed to examine the invasiveness and proliferation capabilities of HepG2 cells following transfection with cNDA or the siRNA of Slug or Snail. The effects of Slug on HCC in vivo were examined using a xenograft model. Slug upregulation increased the percentage of cluster of differentiation (CD)133+ cells among HepG2 cells, and induced cell invasion and proliferation; whereas Snail upregulation did not affect the cells in vitro. The Slug overexpression group exhibited the highest rate of tumor growth compared with the Snail overexpression and control groups in vivo. These findings demonstrated that Slug increases the percentage of CD133+ cells, promotes the clonigenicity of HCC cells and induces a stronger stemness in Slug-overexpressing cells. These changes activate dormant developmental pathways in invading tumor cells. Thus, Slug may serve as a novel target for HCC prognosis and therapy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Contributed equally
ISSN:1792-1074
1792-1082
DOI:10.3892/ol.2014.2037