Risk of data leakage in estimating the diagnostic performance of a deep-learning-based computer-aided system for psychiatric disorders
Deep-learning approaches with data augmentation have been widely used when developing neuroimaging-based computer-aided diagnosis (CAD) systems. To prevent the inflated diagnostic performance caused by data leakage, a correct cross-validation (CV) method should be employed, but this has been still o...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; p. 16633 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
03.10.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Deep-learning approaches with data augmentation have been widely used when developing neuroimaging-based computer-aided diagnosis (CAD) systems. To prevent the inflated diagnostic performance caused by data leakage, a correct cross-validation (CV) method should be employed, but this has been still overlooked in recent deep-learning-based CAD studies. The goal of this study was to investigate the impact of correct and incorrect CV methods on the diagnostic performance of deep-learning-based CAD systems after data augmentation. To this end, resting-state electroencephalogram (EEG) data recorded from post-traumatic stress disorder patients and healthy controls were augmented using a cropping method with different window sizes, respectively. Four different CV approaches were used to estimate the diagnostic performance of the CAD system, i.e., subject-wise CV (sCV), overlapped sCV (oSCV), trial-wise CV (tCV), and overlapped tCV (otCV). Diagnostic performances were evaluated using two deep-learning models based on convolutional neural network. Data augmentation can increase the performance with all CVs, but inflated diagnostic performances were observed when using incorrect CVs (tCV and otCV) due to data leakage. Therefore, the correct CV (sCV and osCV) should be used to develop a deep-learning-based CAD system. We expect that our investigation can provide deep-insight for researchers who plan to develop neuroimaging-based CAD systems for psychiatric disorders using deep-learning algorithms with data augmentation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-43542-8 |